
Midterm #1 for MATH-UA.0123-001 [75 points]
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Problem 1. Let ~r(t) = ~r0 + t~u, where ~r0 = ~r(0), as shown in the figure above. [15 points ]

(a) Write down ~r(0), ~r(1), and ~u. [3 points ]

From the diagram, we can see that ~r(0) = (4, 0) and ~r(1) = (0, 4). Then, since
~r(t) = ~r(0) + t~u, we have ~r(1) = ~r(0) + ~u so that ~u = ~r(1)− ~r(0) = (−4, 4).

(b) Is ~r(t) parametrized by arc length? If it isn’t, reparametrize it so that it is parametrized
by arc length. [3 points ]

To check if a curve is parametrized by arc length, we need to verify that ~r′(t) = 1
for all t. In this case, we can easily see that ~r′(t) = ~u. So we just need to check if
|~u| = 1. Well, ~u =

√
32, so ~r(t) is not parametrized by arc length.

To parametrize ~r(t) by arc length, we could compute the arc length function:

s(t) =

∫ t

0

|~r′(t)|ds =

∫ t

0

√
32ds =

√
32t,

solve for t, giving t(s) = s/
√

32, and substitute into ~r(t) to get:

~r(s) = ~r(t(s)) = ~r0 + ~u
s√
32
.

However, it’s simpler to notice that if scale ~u by any nonzero constant, we
parametrize the same line. So all we need to do is scale ~u so that it has unit
magnitude. This gives the same result.
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(c) Write the expressions for comp~a~b and proj~a~b, where are ~a and ~b are a pair of vectors.
[3 points ]

The expressions are:

comp~a~b =
~a

|~a|
·~b, and proj~a~b = comp~a~b

~a

|~a|
=

(
~a

|~a|
·~b
)
~a

|~a|
.

(d) Draw a picture illustrating comp~a~b and proj~a~b. [3 points ]

The key point here is that proj~a~b is a vector while comp~a~b is a scalar:

~0
~a

~b

proj~a
~b

comp~a
~b

(e) What point does P (~x) = proj~u(~x− ~r0) + ~r0 give? That is, describe in a few words the
geometric significance of the function P (~x). [3 points ]
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Let’s consider the function P (~x) a little bit at a time. First, proj~u(~x− ~r0) projects
~x− ~r0 onto ~u. However, the second part of the problem indicates that we need to
do a little more than just write down some formulas. The hint is in the inclusion
of ~r0 and ~u in this problem.

Note that subtracting ~r0 from ~r(t) has the effect of translating the line ~r(t) so that
it passes through the origin. Furthermore, if ~y is a point in this new coordinate
system, proj~u ~y has the effect of projecting ~y onto the span of the line ~r(t)−~r0. Since
~x−~r0 is itself a point in this new coordinate system, we can see that proj~u(~x−~r0)
is the projection of the point ~x onto the span of the line ~r(t) after the original
coordinate system has been shifted by ~r0. Finally, adding ~r0 to proj~u(~x − ~r0)
returns this projected point back to the original coordinate system.

What is the geometric significance of P (~x)? Well, what is the geometric significance
of proj~u(~y)? It’s the point on the span of ~u which is closest to ~y. Hence, P (~x) is
the point on the line ~r(t) which is closest to the point ~x.

Problem 2. Let ~a = (2, 3, 4), ~b = (3, 3, 3), and ~c = (−1, 2, 2). [11 points ]

(a) Consider the triangle with vertices ~a,~b, and ~0. What is the area of this triangle? [3
points ]

Two of this triangles edges correspond to the line segments connecting ~0 and ~a,
and ~0 and ~b. In class we found that the area of a triangle in R3 is equal to |~a×~b|/2.
We have:

~a×~b = (−3, 6,−3).

Then:
|~a×~b|

2
=

√
32 + 62 + 32

2
=

√
54

2
.

(b) What are the angles of the triangle in part (a)? You can leave your answer unsimplified
in terms of cos−1. [4 points ]

The edges of the triangle correspond to the vectors ~a, ~b, and ~b − ~a. This is “up
to sign”—we can replace any of these vectors with their negations. When we
compute the angles, we need to make sure each of the vectors is oriented correctly
with respect to the other. The three come from the pairs:(

~a,~b
)

︸ ︷︷ ︸
Angle #1

,
(
~b− ~a,−~a

)
︸ ︷︷ ︸
Angle #2

, and
(
~a−~b,−~b

)
︸ ︷︷ ︸
Angle #3

.
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If you can’t picture this and see why this is so, make sure to draw a picture and
convince yourself of it.

The angles are then just given by the usual formulas for each of these pairs:

θ1 = cos−1

(
~a ·~b
|~a||~b|

)
= cos−1

(
27√

29
√

27

)
,

θ2 = cos−1


(
~b− ~a

)
· (−~a)

|~b− ~a|| − ~a|

 = cos−1
(

2√
2
√

29

)
,

θ3 = cos−1


(
~a−~b

)
·
(
−~b
)

|~a−~b|| −~b|

 = cos−1
(

0√
2
√

27

)
.

Notice that θ3 = cos−1(0) = π/2. This is a right triangle! One way we could
simplify this problem for ourselves is by first computing the dot products:

~a · ~a = 29, ~b ·~b = 27,
(
~b− ~a

)
·
(
~b− ~a

)
= 2.

We need to compute these anyway, since (e.g.) ~a · ~a = |~a|2. But the Pythagorean
theorem tells us that for a triangle with side lengths A,B, and C, if A2 +B2 = C2,
then the triangle is a right triangle. In this case:∣∣∣~b∣∣∣2 +

∣∣∣~b− ~a∣∣∣2 = |~a|2 ,

from which we can conclude that the angle between −~b and ~a−~b is π/2 (i.e. 90◦).
From there, we can use SOHCAHTOA to find the other two angles.

(c) Consider the parallelipiped determined by ~a,~b, and ~c. What is its volume? [4 points ]

The volume of a parallelipiped genearted by vectors ~a,~b, and ~b is equal to the
absolute value of the scalar triple product of the vectors. Note that because of the
absolute value, we can choose any of the six possible “absolute value scalar triple
product”s we like (that is, we can put the ~a, ~b, and ~c wherever we want). This

follows from symmetry. Since we likely have already computed ~a×~b by this point,
it’s simplest to compute:

volume =
∣∣∣~c · (~a×~b)∣∣∣ = (−1, 2, 2) · (−3, 6,−3) = 3 + 12− 6 = 9.
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Problem 3. Consider the plane which contains the triangle from the previous problem as
well as the plane containing the points ~a,~b, and ~c. [5 points ]

(a) What is the angle between these planes? [4 points ]

The angle between two planes is the same as the angle between their normal vectors.
A normal vector for the first plane is:

~n1 = ~a×~b = (−3, 6,−3) .

A normal for the other plane is:

~n2 =
(
~b− ~a

)
× (~c− ~a) = (−1, 5,−1) .

Then, the angle between the two planes is:

θ = cos−1
(
~n1 · ~n2

|~n1| |~n2|

)
= cos−1

(
36√

54
√

27

)
.

Note that there are actually two different angles between the planes, corresponding
to whether the argument of cos−1 is positive or negative. However, this opposite
angle is just given by π − θ.

(b) What is the distance between them? [1 point ]

In general, to find the distance between two planes, we have two cases: 1) the
planes intersect, 2) they do not. If the planes intersect, the distance between them
is zero! These planes intersect, since the point ~a is contained in both.

Problem 4. Consider the surface z = 2x2 + 3y2 + 4x − 3y + 6. What kind of quadric is
this? [5 points ]

As it’s written, z = z(x, y) isn’t written in one of the standard forms for a quadric.
To get it into the right form, we complete the square:

z = 2(x+ 1)2 + 3(y − 1
2
)2 +

15

4
.

So, we can see that this is an elliptic paraboloid.
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Figure 1: Plots of |r′(t)| and κ(t) for t such that 0 ≤ t ≤ 2π.

Problem 5. Let ~r(t) =
(

1
2

cos(t)− 2, 1√
6

sin(t) + 1,−1
2

)
. [12 points ]

(a) Write an integral expression for s(t) starting from t = 0. [3 points ]

The arc length function is:

s(t) =

∫ t

0

∣∣∣∣d~rdt
∣∣∣∣ dσ =

∫ t

0

√
sin(σ)2

4
+

cos(σ)2

6
dσ.

If you try to explicitly evaluate this integral, you’ll find that you can’t. That’s why
we leave it as it is in this integral form.
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(b) Sketch the trajectory of ~r(t) in the xy-plane. Where is |d~r/dt| maximimized and
minimized on this trajectory? [3 points ]

A sketch of the curve ~r(t) looks like this in the xy-plane (for z = −1/2):
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From the previous problem, we had:∣∣∣∣d~rdt
∣∣∣∣ =

√
sin(t)2

4
+

cos(t)2

6
.

We can rewrite this as:∣∣∣∣d~rdt
∣∣∣∣ =

√
6 sin(t)2 + 4 cos(t)2

24
=

√
4 + 2 sin(t)2

24
=

√
1

6
+

sin(t)2

12
.

We can see that this function is maximized when sin(t)2 is maximized, and min-
imized when it’s minimized. So, |d~r/dt| has a local minimum when t = πk for
k ∈ Z, and a maximum when t = πk + π

2
for k ∈ Z.

An exercise for you: For this problem, since we’re familiar with the square root
function and sin(x), we can tell pretty easily what’s going on. However, if you like,
try taking the first and second derivatives of |d~r/dt| as a function of t and putting
the previous argument on surer footing.

(c) Compute κ(t). Where is κ(t) maximized and minimized on ~r(t)? [6 points ]
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Problem 6. Let f(x, y, z, t) = F (ax + by + cz − t), where a, b, c ∈ R. What conditions
must a, b, and c satisfy in order for fx + fy + fz + ft = 0 to hold? [5 points ]

Problem 7. Consider the equation x2

4
+ y2

9
+ z2

16
= 1. [12 points ]

(a) Solve for z = z(x, y). What is the domain of z? [3 points ]

(b) Sketch the z = 0, 1, 2, 3, and 4 level sets. [5 points ]

(c) Form the tangent plane approximation to z at (1, 0). Approximate z(0, 0) using this
linearization. What is the error? [4 points ]

Problem 8. Let w = f(x, y, z), x = x(u, v), y = y(u, v), and z = z(u, v). [10 points ]

(a) Write the expressions for ∂w/∂u and ∂w/∂v using the chain rule. [4 points ]

(b) Let w = 3x2 − 2xy + 4z2, x = eu cos v, y = eu sin v, and z = eu. Write down explicit
expressions for ∂w/∂u and ∂w/∂v. [6 points ]
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