
Midterm #2 for MATH-UA.0123-001

Problem 1. Let f(x, y) = cos(x2+2y), and let u = (cos(θ), sin(θ)). Compute Duf(
√

π
2 ,−

π
2 ) for

θ = π/4.

The directional derivative Duf equals u · ∇f . The gradient of f is:

∇f(x, y) =
(
− 2x sin(x2 + 2y),−2 sin(x2 + 2y)

)
.

Note that for x =
√
π/2 and y = −π/2, we have sin(x2+2y) = sin(π/2−π) = sin(−π/2) = −1,

so that ∇f(
√

π/2,−π/2) = 2(
√
π/2, 1). Then, for θ = π/4:

Du∇f(
√

π
2 ,−

π
2 ) = 2

(√2

2
,

√
2

2

)
·
(√π

2
, 1
)
=

√
π +

√
2.

Problem 2. Consider the sphere of radius r whose center is the origin. Show that the normal
line for each point on the sphere passes through the origin. Hint: start by writing down a level set
function f(x, y, z) such that f(x, y, z) = 0 is the sphere of interest.

In general, the normal line of a surface at a point x0 is any point which lies on the line
r(t) = x0 + tn(x0), where n is the surface normal of that surface. If we can describe a surface
using a level set function, say f(x) = 0, then the normal of that surface at a point x on the
surface is ∇f(x).

We can write the sphere of radius r in R3 using a level set function as:

f(x, y, z) = x2 + y2 + z2 − r2 = 0.

The sphere’s surface normal is:

∇f(x, y, z) =
(
2x, 2y, 2z

)
.

Let (x, y, z) be a point on the sphere. Then, we can parametrize that normal line through
(x, y, z) as:

r(t) = (x, y, z) + t
(
2x, 2y, 2z

)
=
(
(2t+ 1)x, (2t+ 1)y, (2t+ 1)z

)
.

Then:
r(−1/2) = (0, 0, 0).

Hence, the normal line for each point on the sphere passes through the origin.

Problem 3. Use the method of Lagrange multipliers to prove that the rectangle of maximum
area with a given perimeter p is a square.



Let the width of a rectangle be w, and its height be h. Then its perimeter is p(w, h) =
2w+2h, and its area is A(w, h) = wh. So, the maximization problem we’re interested in solving
is:

maximize wh

subject to 2w + 2h

To use the method of Lagrange multipliers, we need to find a Lagrange multiplier λ such that
∇A(w, h) = λ∇p(w, h). This is equivalent to solving the system:

h = 2λ, w = 2λ

for w, h, and λ. We conclude that λ∗ = w/2 = h/2. Hence, w∗ = h∗.
Note that this just gives us a first-order necessary condition for optimality. That is, we

know that w∗ = h∗ such that p = 2w∗ + 2h∗ is a critical point, but we don’t know if it’s a
local maximum or a local minimum. In terms of how this problem was graded, that was good
enough for me. Another way to do this problem is as follows.

Since p is constant with respect to w and h, we can eliminate the equality constraint from
the problem by writing h(w) = p/2 − w, so that A(w) = w(p/2 − w) = pw/2 − w2. Then,
A′(w) = p/2− 2w. If A′(w) = 0, then w = p/4, which gives h(w) = h(p/4) = p/2− p/4 = p/4.
So, we again see that the width and height must be equal. Now, since A′′(w) = −2 < 0, we
can see that this critical point must be a local maximum (in fact, a global maximum).

Problem 4. Consider the rectangle R = [0, π]× [0, π], and the integral:

I =

∫∫
R
cos(x) sin(y)dA.

Use the midpoint rule with m = n = 2 (that is, divide R into four equal squares total) to approx-
imate I. Next, evaluate I by doing the double integral. What is the error in the midpoint rule
approximation?

If we divide R into four squares of equal size, their midpoints are:(
π
4 ,

π
4

)
,
(
3
4π,

π
4

)
,
(
π
4 ,

3
4π
)
,
(
3
4π,

3
4π
)
,

and their areas are A = (π/2)2 = π2/4. Applying the midpoint rule to approximate I gives:

Imp = A ·
(
cos
(
π
4

)
sin
(
π
4

)
+ cos

(
3
4π
)
sin
(
π
4

)
+ cos

(
π
4

)
sin
(
3
4π
)
+ cos

(
3
4π
)
sin
(
3
4π
)))

= A ·

(√
2

2
·
√
2

2
−

√
2

2

√
2

2
+

√
2

2

√
2

2
−

√
2

2

√
2

2

)
= 0.
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On the other hand, if we do the double integral, we get:

I =

∫∫
R
cos(x) sin(y)dA =

∫ π

0
cos(x)dx

∫ π

0
sin(y)dy

= sin(x)|πx=0 − cos(y)|πy=0 = (sin(π)− sin(0)) (cos(0)− cos(π))

= (0− 0)(1− 1) = 0.

Since Imp = I, there is no error in the midpoint rule approximation.

Problem 5. Evaluate
∫∫∫

E

√
x2 + y2 where E is the region that lies between the cylinders x2 +

y2 = 4 and x2 + y2 = 16, and between the planes z = z0 and z = z1, where z0 < z1.

Let ∆z = z1 − z0. Then:∫∫∫
E

√
x2 + y2 =

∫ 2π

0

∫ z1

z0

∫ 4

2
r2drdzdθ = 2π∆z

r3

3

∣∣∣∣4
r=2

=
2

3
π∆z (64− 8) =

112

3
π∆z.

Problem 6. Set up and evaluate a triple integral in spherical coordinates to find the volume of
a sphere of radius r.

∫ 2π

0

∫ π

0

∫ r

0
ρ2 sin(ϕ)dρdϕdθ = 2π

∫ π

0
sin(ϕ)dϕ

∫ ρ

0
ρ2dρ

= 2π ·
(
− cos(ϕ)|πϕ=0

)
·

(
ρ3

3

∣∣∣∣r
ρ=0

)
=

4

3
πr3.

Problem 7. Find the average distance between the origin and a point in a spherical shell (centered
about the origin) with inner and outer radii r0 < r1.

The average value of a function f over a three-dimensional region R is given by:

1

vol(R)

∫∫∫
R
f(x, y, z)dA.

From the previous problem, we know that the volume of a sphere of radius r is 4πr3/3. So, a
spherical shell with inner and outer radii r0 and r1 has volume given by 4π(r31 − r30)/3. The
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function we want to average is just the Euclidean distance of a point to the origin, which is ρ
in spherical coordinates. So, we start by integrating:∫ 2π

0

∫ π

0

∫ r1

r0

ρ3 sin(ϕ)dρdϕdθ = 2π

∫ π

0
sin(ϕ)dϕ

∫ r1

r0

ρ3dρ

= 4π · ρ
4

4

∣∣∣∣r1
ρ=r0

= 4π · r
4
1 − r40
4

= π(r41 − r40).

Hence, the average distance over the shell is:

π(r41 − r40)
4
3π
(
r31 − r30

) =
3

4
· r

4
1 − r40
r31 − r30

.

Problem 8 (bonus). Observe that if r0 = r1 in Problem 7, the average distance is obviously just
r0, since the average distance to the origin of a point on a sphere is just the radius of the sphere
itself. Prove this by taking the limit as r1 → r0 of the result of Problem 7.

The issue with our formula for the average distance is that it is undefined if we set r0 = r1.
If we take the limit as r1 → r0, it is in indeterminate form. To get around this, we could use
L’Hôpital’s rule.

3

4
lim
r1→0

r41 − r40
r31 − r30

=
3

4
lim

r1→r0

4r31
3r21

= r0.

Another approach is to factor the numerator and denominator of our expression. The
numerator can be factored as:

r41 − r40 =
(
r21
)2 − (r20)2 = (r21 − r20

) (
r21 + r20

)
= (r1 − r0)(r1 + r0)(r

2
1 + r20),

and the denominator can be factored as:

r31 − r30 = (r1 − r0)(r
2
1 + r0r1 + r20).

Hence, if we set r = r1 = r0, we get:

3

4

(r + r)(r2 + r2)

r2 + r · r + r2
=

3

4

2r · 2r2

3r2
=

3

4
· 4r

3

3r2
= r.

Factoring the numerator and denominator and cancelling one of the factors shows that the
expression has a “removable singularity”. That is, the formula for the average distance of
a point on a spherical shell to the origin isn’t “truly” singular, which matches our physical
intuition.

Problem 9. Find the volume of the solid E that lies below the cone z = −
√

x2 + y2 and above
the sphere x2 + y2 + z2 = r2.
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By symmetry, this is the same as the volume of the solid which lies above the cone z =√
x2 + y2 and below the sphere x2 + y2 + z2 = r2 (we can obtain this shape by reflecting the

original shape over the xy plane, which doesn’t change its volume). We computed this volume
in class:∫ 2π

0

∫ π/4

0

∫ r

0
ρ2 sin(ϕ)dρdϕdθ = 2π

∫ π/4

0
sin(ϕ)dϕ

∫ r

0
ρ2dρ

= 2π · (cos(0)− cos(π/4)) · r
3

3
=

2

3
π

(
1−

√
2

2

)
r3.

Problem 10. Consider the vector field F (x, y) = (−y, x). Is this a gradient vector field? Why
or why not? Let C be a circular arc of radius r subtending an angle θ. Evaluate

∫
C F · dr.

If we integrate the first component of F with respect to x, we get −xy+C, for some constant
C. On the other hand, if we integrate the second component with respect to y, we get xy+C ′,
for another constant C ′. So, we can see that F isn’t a gradient vector field.

Since F isn’t conservative, to compute the line integral, we have to integrate it directly. We
can parametrize a circular arc of angle θ and radius r as:

r(t) = r(cos t, sin t), 0 ≤ t ≤ θ.

Then, r′(t) = r(− sin t, cos t). Hence:∫
C
F · dr =

∫ θ

0
F (r(t)) · r′(t)dt

=

∫ θ

0
r(− sin t, cos t) · r(−r sin t, cos t)dt

= r2
∫ θ

0

(
sin(t)2 + cos(t)2

)
dt = r2

∫ θ

0
dt = θr2.

Problem 11. Let F (x, y) = (xy2, x2y), and let C be the unit circle. What is
∫
C F · dr?

Let f(x, y) = x2y2/2. Then, F = ∇f(x, y), from which we see that F is a conservative
vector field on all of R2. Since C is a closed loop, we can conclude that

∮
C F · dr = 0.

Problem 12 (bonus). A spherical rectangle is a set [ρ0, ρ1]× [θ0, θ1]× [ϕ0, ϕ1] ⊆ R3, parametrized
using spherical coordinates. Assuming that ρ0 ≤ ρ1, θ0 ≤ θ1, and ϕ0 ≤ ϕ1, draw or name as many
different kinds of shapes that you can think of which are actually just spherical rectangles. (If your
drawings suck, you won’t get any points.)

5


