\qquad

Calculus III, Final Exam

Problem	Points
True/False	
Problem 1	
Problem 2	
Problem 3	
Problem 4	
Problem 5	
Problem 6	
Problem 7	
Problem 8	
Problem 9	
+ Bonus	
Total	

Rules of the exam

- You have 1 h 50 min to finish this exam.
- Show your work! - any answer without an explanation will get you zero points.
- No calculators and no formula-sheets are allowed.
- When applicable, BOX the answer.
- Do not spend more than 10 min on a problem. If you get stuck, move on to the next one.
- Do not forget to write your name.

Good luck!

True / false

Circle the right answer. You don't need to justify it.

1. (True) / (False) Directional derivative $D_{\mathbf{u}} \mathbf{f}=1$ for $\mathbf{f}=(x, 0,0)$ and $\mathbf{u}=(1,-1,1)$.
2. (True) / (False) Normal vector to $z=x^{2}+y^{2}$ at $(x, y, z)=(1,1,2)$ is $(2,2,-1)$.
3. (True) / (False) In spherical coordinates the equation $\phi=\pi / 3$ describes a plane.
4. (True) / (False) When the vector function \mathbf{F}, curve C and area S satisfy the Stokes theorem, the theorem concludes that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} d S$
5. (True) / (False) An irrotational vector field \mathbf{F} is the one for which $\nabla \times \mathbf{F}=0$.
6. (True) / (False) Conservative vector field \mathbf{F} is the one for which $\nabla \cdot \mathbf{F}=0$.
7. (True) / (False) If \mathbf{F} is a 3-dim vector field, then $\operatorname{div}(\mathbf{F})$ is a vector field.
8. (True) / (False) If \mathbf{F} is a 3-dim vector field, then $\operatorname{curl}(\mathbf{F})$ is a vector field.
9. (True) / (False) If $f(x, y)$ has a local maximum or minimum at (a, b) and the first order partial derivatives of $f(x, y)$ exist at (a, b), then $f_{x}(a, b)=0$ OR $f_{y}(a, b)=0$.
10. (True) / (False) The field $\mathbf{F}(x, y, z)=(\sin (y), x \cos (y),-\sin (z))$ has a sink at the point $(0,0,0)$.

Calculus III. Midterm. Part II.

Show your work - even the correct answer with no justification will get zero points. When appropriate - box the answer. Simplify the answers as much as possible.

1. Suppose S and C satisfy the hypotheses of Stokes' Theorem and f, g have continuous secondorder partial derivatives. Compute

$$
\int_{C}(f \nabla g+g \nabla f) \cdot d \mathbf{r}
$$

2. Evaluate the integral by reversing the order of integration

$$
\int_{0}^{\pi^{1 / 4}} \int_{y^{2}}^{\pi^{1 / 2}} y \cos \left(x^{2}\right) d x d y
$$

3. Let $\mathbf{F}(x, y)=\left(y e^{x}+\sin (y)\right) \mathbf{i}+\left(e^{x}+x \cos (y)\right) \mathbf{j}$. Show that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path and compute the integral, where C is the path from $(0,1)$ to $(5,0)$.
4. A particle on (x, y)-plane starts at the point $(-1,-1)$, moves along a horizontal straight line to the point $(1,-1)$ and then up to the point $(1,0)$. From this point it moves along the semicircle $y=\sqrt{1-x^{2}}$ to the point $(-1,0)$ and from there to the starting point (along a vertical straight line). Use Green's Theorem to find the work done on this particle by the force field $\mathbf{F}(x, y)=\left(5 x, \frac{x^{3}}{3}+x y^{2}+y\right)$.
5. Find the volume of a solid E bounded by $x^{2}+y^{2}+z^{2}=1$ with a removed conical section $z=\sqrt{x^{2}+y^{2}}$.
6. Let S be a surface defined by $\mathbf{r}(u, v)=(u, u+v, u-v)$ for $u^{2}+v^{2} \leq 1$. Compute $\iint_{S} y^{2}+z^{2} d S$.
7. Find the absolute min and max values of $f(x, y)=x^{2}+(y-1)^{2}$ in the domain $D=\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$.
Hint: first find \max / min values inside the circle, then on the boundary.
8. Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, that is, calculate the flux of \mathbf{F} across S, where $\mathbf{F}(x, y, z)=\left(\cos (z)+x y^{2}\right) \mathbf{i}+x e^{-z} \mathbf{j}+\left(\sin (y)+x^{2} z\right) \mathbf{k}$, where S is the surface of the solid bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4$.
9. Compute the integral of the $\operatorname{curl}(\mathbf{F})$, over the surface S, where the vector-field \mathbf{F} is $\mathbf{F}=$ $\left(y^{2}, x, z^{2}\right)$, and the surface S is the part of the paraboloid $z=x^{2}+y^{2}$ that lies below the plane $z=1$, oriented downward. (You might want to use the Stokes' theorem. If you need double-angle formulas, they are on the last page of the exam.)

Bonus

Let $\Phi(x, y, t)=\frac{1}{4 \pi \sigma t} \exp \left(\frac{-\left(x^{2}+y^{2}\right)}{2 \sigma t}\right)$ for $t>0$, with coefficient $\sigma>0$. Show that

$$
\iint_{R^{2}} \Phi(x, y, t) d A=1
$$

for all fixed values of $t>0$.

Useful Formulas:

$$
\begin{aligned}
\sin ^{2}(t) & =\frac{1-\cos (2 t)}{2} \\
\cos ^{2}(t) & =\frac{1+\cos (2 t)}{2} \\
\cos ^{2}(t) & =1-\sin ^{2}(t) \\
\sin ^{2}(t) & =1-\cos ^{2}(t) \\
\nabla^{2} f & =\nabla \cdot \nabla f
\end{aligned}
$$

Scratch paper...

Scratch paper...

Scratch paper...

