Solutions to Old Final 1

Matthew Leingang

December 19, 2011

True/False.

1. Directional derivative $D_{\mathbf{u}} \mathbf{f}=1$ for $\mathbf{f}=\langle x, 0,0\rangle$ and $\mathbf{u}=\langle 1,-1,1\rangle$.

Solution. False The directional derivative is

$$
\begin{aligned}
D_{\mathbf{u}} \mathbf{f}(x, y, z) & =\left.\frac{d}{d t} \mathbf{f}((x, y, z)+t\langle 1,-1,1\rangle)\right|_{t=0} \\
& =\left.\frac{d}{d t}\langle x+t, 0,0\rangle\right|_{t=0}=\langle 1,0,0\rangle
\end{aligned}
$$

In particular, the directional derivative of a vector field is a vector field. (This problem goes beyond the usual scope of MATH-UA 123 Calculus III.)
2. Normal vector to $z=x^{2}+y^{2}$ at $(x, y, z)=(1,1,2)$ is $\langle 2,2,-1\rangle$.

Solution. True On a surface given by an equation $g(x, y, z)=0$, the vector $\nabla f(x, y, z)$ is normal to the surface at (x, y, z). We have $g=x^{2}+y^{2}-z$, so $\nabla g=\langle 2 x, 2 x,-1\rangle$ is normal at (x, y, z). If $x=1$ and $y=1$ then $\nabla g=\langle 2,2,-1\rangle$.
3. In spherical coordinates the equation $\varphi=\pi / 3$ describes a plane.

Solution. False In spherical coordinates the equation $\varphi=\pi / 3$ describes a cone.
4. When the vector function \mathbf{F}, curve C and surface S satisfy the hypotheses of Stokes's theorem, the theorem concludes that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} d S$

Solution. False The right-hand side has a syntax error: a vector field cannot be integrated over a surface the way a function can. The statement would be true if the right-hand side were replaced with $\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}$.
5. An irrotational vector field \mathbf{F} is one for which $\nabla \times \mathbf{F}=\mathbf{0}$.

Solution. True This is the definition, or at least equivalent to it.
6. A conservative vector field \mathbf{F} is one for which $\nabla \cdot \mathbf{F}=0$.

Solution. False The definition of conservative vector field is that there exists f such that $\nabla f=\mathbf{F}$. It is necessary then that $\nabla \times \mathbf{F}=\mathbf{0}$, but not that $\nabla \cdot \mathbf{F}=0$ For instance, if $f(x, y, z)=x^{2}+y^{2}+z^{2}$, then $\mathbf{F}=\nabla f=$ $\langle 2 x, 2 y, 2 z\rangle$ is conservative by definition, But $\nabla \cdot \nabla \mathbf{F}=6 \neq 0$.
7. If \mathbf{F} is a three-dimensional vector field, then $\operatorname{div} \mathbf{F}$ is a vector field.

Solution. False $\operatorname{div} \mathbf{F}$ is a scalar field, i.e., a function.
8. If \mathbf{F} is a three-dimensional vector field, then $\operatorname{curl} \mathbf{F}$ is a vector field.

Solution. True This is from the definition.
9. If $f(x, y)$ has a local maximum or minimum at (a, b) and the first-order partial derivatives of $f(x, y)$ exist at (a, b), then $f_{x}(a, b)=0 O R f_{y}(a, b)=$ 0.

Solution. The statement with "OR" replace with "AND" is equivalent to Theorem 11.7.2 on page 645 of the text, so that would be true. Since "AND" is a stronger condition than "OR", the given statement is True as well.
10. The field $\mathbf{F}(x, y, z)=\langle\sin (y), x \cos (y),-\sin (z)\rangle$ has a sink at the point $(0,0,0)$.

Solution. True A sink of a vector field \mathbf{F} is a place where $\nabla \cdot \mathbf{F}<0$. We have

$$
\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x} \sin (y)+\frac{\partial}{\partial y} x \cos (y)-\frac{\partial}{\partial z} \sin (z)=0-x \sin (y)-\cos (z)
$$

which at the point $(0,0,0)$ is -1 .
Problem 1. Suppose S and C satisfy the hypotheses of Stokes's Theorem and f, g have continuous second-order partial derivatives. Compute

$$
\int_{C}(f \nabla g+g \nabla f) \cdot d \mathbf{r}
$$

Solution. If f and g have continuous second-order partial derivatives, then Clairaut's theorem applies and nothing strange will happen with mixed partial derivatives. Now

$$
\begin{aligned}
\int_{C}(f \nabla g+g \nabla f) \cdot d \mathbf{r} & =\int_{C} \nabla(f g) d \mathbf{r} \\
& =\iint_{S} \nabla \times(\nabla(f g)) \cdot d \mathbf{S} \\
& =0
\end{aligned}
$$

Problem 2. Evaluate the integral by reversing the order of integration:

$$
\int_{0}^{\pi^{1 / 4}} \int_{y^{2}}^{\pi^{1 / 2}} y \cos \left(x^{2}\right) d x d y
$$

Solution. The region integrated over can be described as

$$
\begin{aligned}
D & =\left\{(x, y) \mid 0 \leq y \leq \pi^{1 / 4}, y^{2} \leq x \leq \pi^{1 / 2}\right\} \\
& =\{(x, y) \mid 0 \leq x \leq \sqrt{\pi}, 0 \leq y \leq \sqrt{x}\}
\end{aligned}
$$

(draw it to see this) So

$$
\begin{aligned}
\int_{0}^{\pi^{1 / 4}} \int_{y^{2}}^{\pi^{1 / 2}} y \cos \left(x^{2}\right) d x d y & =\int_{0}^{\sqrt{x}} \int_{0}^{\sqrt{x}} y \cos \left(x^{2}\right) d y d x \\
& =\left.\int_{0}^{\sqrt{x}} \frac{y^{2}}{2} \cos \left(x^{2}\right)\right|_{y=0} ^{y=\sqrt{x}} d x \\
& =\frac{1}{2} \int_{0}^{\sqrt{x}} x \cos \left(x^{2}\right) d x
\end{aligned}
$$

Substitute $u=x^{2}$ and $d u=2 x d x$. Then

$$
=\frac{1}{4} \int_{0}^{\pi} \cos (u) d u=0
$$

Problem 3. Let $\mathbf{F}(x, y)=\left(y e^{x}+\sin (y)\right) \mathbf{i}+\left(e^{x}+x \cos (y)\right) \mathbf{j}$. Show that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path and compute the integral, where C is the path from $(0,1)$ to $(5,0)$.

Solution. Let $P=y e^{x}+\sin (y)$ and $Q=e^{x}+x \cos (y)$. Then

$$
\frac{\partial P}{\partial y}=e^{x}+\cos (y)=\frac{\partial Q}{\partial x}
$$

So $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ has $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ independent of path; hence \mathbf{F} is conservative. In fact $\mathbf{F}=\nabla f$, where $f(x, y)=y e^{x}+x \sin (y)$. So

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \nabla f \cdot d \mathbf{r}=f(5,0)-f(0,1)=0-1=-1
$$

Problem 4. A particle on the (x, y)-plane starts at the point $(-1,-1)$, moves along a horizontal straight line to the point $(1,-1)$ and then up to the point $(1,0)$. From this point it moves along the semicircle $y=\sqrt{1-x^{2}}$ to the point $(-1,0)$ and from there to the starting point along a vertical straight line. Use Green's Theorem to find the work done on this particle by the force field $\mathbf{F}=$ $\left\langle 5 x, \frac{x^{3}}{3}+x y^{2}+y\right\rangle$.

Solution. Let D be the region enclosed by C. Then

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C}\left[5 x d x+\left(\frac{x^{3}}{3}+x y^{2}+y\right) d y\right] \stackrel{\text { Green }}{=} \iint_{D}\left(x^{2}+y^{2}\right) d A
$$

Now $D=D_{1} \cup D_{2}$, where

$$
\begin{aligned}
& D_{1}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1, y \geq 0\right\} \\
& D_{2}=\{(x, y) \mid-1 \leq x \leq 1-1 \leq y \leq 0\}
\end{aligned}
$$

Then using iterated integrals

$$
\begin{aligned}
\iint_{D_{2}}\left(x^{2}+y^{2}\right) d A & =\int_{-1}^{1} \int_{-1}^{0}\left(x^{2}+y^{2}\right) d y d x \\
& =\int_{-1}^{1} x^{2} y+\left.\frac{y^{3}}{3}\right|_{y=-1} ^{y=0} d x \\
& =\int_{-1}^{1}\left(x^{2}+\frac{1}{3}\right) d x \\
& =2 \int_{0}^{1}\left(x^{2}+\frac{1}{3}\right) d x \\
& =2\left[\frac{x^{3}}{3}+\frac{x}{3}\right]_{0}^{1} \\
& =\frac{4}{3}
\end{aligned}
$$

For the integral over D_{1} we use polar coordinates:

$$
\begin{aligned}
\iint_{D_{2}}\left(x^{2}+y^{2}\right) d A & =\int_{0}^{\pi} \int_{0}^{1} r^{2} r d r d \theta \\
& =\int_{0}^{\pi} d \theta \cdot \int_{0}^{1} r^{3} d r \\
& =\left.\pi \cdot \frac{r^{4}}{4}\right|_{0} ^{1}=\frac{\pi}{4}
\end{aligned}
$$

So

$$
W=\iint_{D_{1}}\left(x^{2}+y^{2}\right) d A+\iint_{D_{2}}\left(x^{2}+y^{2}\right) d A=\frac{4}{3}+\frac{\pi}{4}
$$

Problem 5. Find the volume of the solid E bounded by $x^{2}+y^{2}+z^{2}=1$ with a removed conical section $z=\sqrt{x^{2}+y^{2}}$.

Solution. In spherical coordinates the solid E can be described as

$$
E=\left\{(\rho, \theta, \varphi) \mid 0 \leq \theta \leq 2 \pi, 0 \leq \rho \leq 1, \frac{\pi}{4} \leq \theta \leq \pi\right\}
$$

So

$$
\begin{aligned}
\operatorname{Vol}(E) & =\iiint_{E} d V=\int_{\pi / 4}^{\pi} \int_{0}^{2 \pi} \int_{0}^{1} \rho^{2} \sin (\varphi) d \rho d \theta d \varphi \\
& =\int_{0}^{2 \pi} d \theta \cdot \int_{0}^{1} \rho^{2} d \rho \cdot \int_{\pi / 4}^{\pi} d \varphi \\
& =2 \pi \cdot \frac{1}{3}[-\cos (\varphi)]_{\pi / 4}^{\pi}=\frac{2 \pi}{3}[\cos (\varphi)]_{\pi}^{\pi / 4} \\
& =\frac{2 \pi}{3}\left[\frac{\sqrt{2}}{2}-(-1)\right] \\
& =\frac{2 \pi}{3}\left[\frac{\sqrt{2}}{2}+\frac{2}{2}\right] \\
& =\frac{\pi}{3}(\sqrt{2}+2)
\end{aligned}
$$

Problem 6. Let S be the surface defined by $\mathbf{r}(u, v)=\langle u, u+v, u-v\rangle$ for $u^{2}+$ $v^{2} \leq 1$. Compute $\iint_{S}\left(y^{2}+z^{2}\right) d S$.

Solution. To find the area element we compute

$$
\begin{aligned}
\mathbf{r}_{u} & =\langle 1,1,1\rangle \\
\mathbf{r}_{v} & =\langle 0,1,-1\rangle \\
\mathbf{r}_{u} \times \mathbf{r}_{v} & =\langle-2,1,1\rangle \\
\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| & =\sqrt{6}
\end{aligned}
$$

Let $D=\left\{(u, v) \mid u^{2}+v^{2} \leq 1\right\}$. Then

$$
\begin{aligned}
\iint_{S}\left(y^{2}+z^{2}\right) d S & =\iint_{D}\left((u+v)^{2}+(u-v)^{2}\right) \sqrt{6} d A_{u, v} \\
& =\sqrt{6} \iint_{D}\left(2 u^{2}+2 v^{2}\right) d A_{u, v} \\
& =2 \sqrt{6} \int_{0}^{2 \pi} \int_{0}^{1} r^{2} r d r d \theta \\
& =2 \sqrt{6} \int_{0}^{2 \pi} d \theta \cdot \int_{0}^{1} r^{3} d r \\
& =2 \sqrt{6} \cdot 2 \pi \cdot \frac{1}{4}=\sqrt{6} \pi
\end{aligned}
$$

Problem 7. Find the absolute min and max values of $f(x, y)=x^{2}+(y-1)^{2}$ in the domain $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}$.

Solution. The critical points within D are the solutions to $\nabla f=\mathbf{0}$. Now

$$
\frac{\partial f}{\partial x}=2 x \quad \text { and } \quad \frac{\partial f}{\partial y}=2(y-1)
$$

So $\nabla f=\mathbf{0}$ implies $x=0$ and $y=1$. The corresponding critical value is $f(0,1)=0$.

The critical points on the boundary of D are the solutions to $\nabla f=\lambda \nabla g$, where $g(x, y)=x^{2}+y^{2}$. In components:

$$
2 x=\lambda 2 x \quad \text { and } \quad 2(y-1)=\lambda 2 y
$$

The first equation implies $x=0$ or $\lambda=1$. If $x=0$, then $y= \pm 2$ and there are values of λ which make the second equation consistent with the first. So we have found two critical points $(0,2)$ and $(0,-2)$, with corresponding critical values $f(0,2)=1$ and $f(0,-2)=9$.

If $\lambda=1$, then the second equation reduces to $0=-2$, a contradiction. So there are no more critical points.

The largest value of f on this domain is therefore $f(0,-2)=9$, and the smallest value $f(0,1)=0$.

Problem 8. Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F}$. $d \mathbf{S}$; that is, calculate the flux of \mathbf{F} across S, where

$$
\mathbf{F}(x, y, z)=\left(\cos (z)+x y^{2}\right) \mathbf{i}+x e^{-z} \mathbf{j}+\left(\sin (y)+x^{2} z\right) \mathbf{k}
$$

and S is the surface of the solid bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4$.

Solution. Let E be the solid described by $\left\{(x, y, z) \mid 0 \leq z \leq x^{2}+y^{2}, 0 \leq z \leq 4\right\}$ The divergence of \mathbf{F} is

$$
\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x}\left(\cos (z)+x y^{2}\right)+\frac{\partial}{\partial y} x e^{-z}+\frac{\partial}{\partial z}\left(\sin (y)+x^{2} z\right)=y^{2}+x^{2}
$$

So by the divergence theorem

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{E}\left(x^{2}+y^{2}\right) d V \\
& =\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{4} r^{2} r d z d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \cdot \int_{0}^{2} r^{3} d r \cdot \int_{0}^{4} d z \\
& =2 \pi \cdot 4 \cdot 4=32 \pi
\end{aligned}
$$

Problem 9. Compute the integral of curl \mathbf{F} over the surface S, where the vector field \mathbf{F} is $\left\langle y^{2}, x, z^{2}\right\rangle$, and the surface S is the part of the paraboloid $z=x^{2}+y^{2}$ that lies below the plane $z=1$, oriented downward.

Solution. By Stokes's Theorem,

$$
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\int_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\int_{\partial S}\left(y^{2} d x+x d y+z^{2} d z\right)
$$

The curve ∂S is the unit circle in the plane $z=1$, but the induced orientation is the negative (clockwise from above) orientation. We parametrize this curve with $x=\cos (t), y=-\sin (t), z=1$. Then $d x=-\sin (t) d t, d y=-\cos (t) d t$, and $d z=0$. So

$$
\begin{aligned}
\int_{\partial S}\left(y^{2} d x+x d y+z^{2} d z\right) & =\int_{0}^{2 \pi}\left[(-\sin (t))^{2} \sin (t)+\cos (t)(-\cos (t))+1^{2}(0)\right] d t \\
& =-\int_{0}^{2 \pi} \sin (t)^{3} d t-\int_{0}^{2 \pi} \cos (t)^{2} d t
\end{aligned}
$$

The first integral is zero by the periodicity of $\sin (t)^{3}$. The second integral can be computed with the double-angle trigonometric identities:

$$
\begin{aligned}
-\int_{0}^{2 \pi} \cos (t)^{2} d t & =-\frac{1}{2} \int_{0}^{2 \pi}(1+\cos (2 t)) d t \\
& =-\frac{1}{2} \cdot 2 \pi-\frac{1}{2} \int_{0}^{2 \pi} \cos (2 t) d t
\end{aligned}
$$

again by symmetry. Hence

$$
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=-\pi
$$

Bonus. Let $\Phi(x, y, t)=\frac{1}{4 \pi \sigma t} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma t}\right)$ for $t>0, \sigma>0$. Find

$$
\iint_{\mathbb{R}^{2}} \Phi(x, y, t) d A_{x, y}
$$

Solution. This is an improper integral, which we can switch to polar:

$$
\begin{aligned}
\iint_{\mathbb{R}^{2}} \Phi(x, y, t) d A_{x, y} & =\frac{1}{4 \pi \sigma t} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma t}\right) d x d y \\
& =\frac{1}{4 \pi \sigma t} \int_{0}^{2 \pi} \int_{0}^{\infty} \exp \left(-\frac{r^{2}}{2 \sigma t}\right) r d r d \theta \\
& =\frac{2 \pi}{4 \pi \sigma t} \int_{0}^{\infty} \exp \left(-\frac{r^{2}}{2 \sigma t}\right) r d r \\
& =\frac{1}{2 \sigma t} \int_{0}^{\infty} \exp \left(-\frac{r^{2}}{2 \sigma t}\right) r d r
\end{aligned}
$$

Let $u=\frac{r^{2}}{2 \sigma t}$, and $d u=\frac{2 r d r}{2 \sigma t}$. So $r d r=\sigma t d u$. Then

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{\infty} \exp (-u) d u \\
& =-\left.\frac{1}{2} \exp (-u)\right|_{0} ^{\infty}=\frac{1}{2}
\end{aligned}
$$

