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True/False.

1. Directional derivative Duf = 1 for f = 〈x, 0, 0〉 and u = 〈1,−1, 1〉.

Solution. False The directional derivative is

Duf(x, y, z) =
d

dt
f ((x, y, z) + t 〈1,−1, 1〉)

∣∣∣∣
t=0

=
d

dt
〈x+ t, 0, 0〉

∣∣∣∣
t=0

= 〈1, 0, 0〉

In particular, the directional derivative of a vector field is a vector field.
(This problem goes beyond the usual scope of MATH-UA 123 Calcu-
lus III.)

2. Normal vector to z = x2 + y2 at (x, y, z) = (1, 1, 2) is 〈2, 2,−1〉.

Solution. True On a surface given by an equation g(x, y, z) = 0, the vector
∇f(x, y, z) is normal to the surface at (x, y, z). We have g = x2 + y2 − z,
so ∇g = 〈2x, 2x,−1〉 is normal at (x, y, z). If x = 1 and y = 1 then
∇g = 〈2, 2,−1〉.

3. In spherical coordinates the equation ϕ = π/3 describes a plane.

Solution. False In spherical coordinates the equation ϕ = π/3 describes
a cone.

4. When the vector function F, curve C and surface S satisfy the hypotheses
of Stokes’s theorem, the theorem concludes that

∫
C
F · dr =

∫∫
S
∇× F dS

Solution. False The right-hand side has a syntax error: a vector field
cannot be integrated over a surface the way a function can. The statement
would be true if the right-hand side were replaced with

∫∫
S
∇×F ·dS.

5. An irrotational vector field F is one for which ∇× F = 0.
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Solution. True This is the definition, or at least equivalent to it.

6. A conservative vector field F is one for which ∇ · F = 0.

Solution. False The definition of conservative vector field is that there
exists f such that ∇f = F. It is necessary then that ∇× F = 0, but not
that ∇ · F = 0 For instance, if f(x, y, z) = x2 + y2 + z2, then F = ∇f =
〈2x, 2y, 2z〉 is conservative by definition, But ∇ · ∇F = 6 6= 0.

7. If F is a three-dimensional vector field, then divF is a vector field.

Solution. False divF is a scalar field, i.e., a function.

8. If F is a three-dimensional vector field, then curlF is a vector field.

Solution. True This is from the definition.

9. If f(x, y) has a local maximum or minimum at (a, b) and the first-order
partial derivatives of f(x, y) exist at (a, b), then fx(a, b) = 0 OR fy(a, b) =
0.

Solution. The statement with “OR” replace with “AND” is equivalent to
Theorem 11.7.2 on page 645 of the text, so that would be true. Since
“AND” is a stronger condition than “OR”, the given statement is True
as well.

10. The field F(x, y, z) = 〈sin(y) , x cos(y) ,− sin(z)〉 has a sink at the point
(0, 0, 0).

Solution. True A sink of a vector field F is a place where ∇ · F < 0. We
have

∇ · F =
∂

∂x
sin(y) +

∂

∂y
x cos(y)− ∂

∂z
sin(z) = 0− x sin(y)− cos(z)

which at the point (0, 0, 0) is −1.

Problem 1. Suppose S and C satisfy the hypotheses of Stokes’s Theorem and
f , g have continuous second-order partial derivatives. Compute∫

C

(f∇g + g∇f) · dr
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Solution. If f and g have continuous second-order partial derivatives, then
Clairaut’s theorem applies and nothing strange will happen with mixed par-
tial derivatives. Now∫

C

(f∇g + g∇f) · dr =

∫
C

∇(fg)dr

=

∫∫
S

∇× (∇(fg)) · dS

= 0

Problem 2. Evaluate the integral by reversing the order of integration:∫ π1/4

0

∫ π1/2

y2
y cos

(
x2
)
dx dy

Solution. The region integrated over can be described as

D =
{

(x, y)
∣∣∣ 0 ≤ y ≤ π1/4, y2 ≤ x ≤ π1/2

}
=
{

(x, y)
∣∣ 0 ≤ x ≤

√
π, 0 ≤ y ≤

√
x
}

(draw it to see this) So∫ π1/4

0

∫ π1/2

y2
y cos

(
x2
)
dx dy =

∫ √x
0

∫ √x
0

y cos
(
x2
)
dy dx

=

∫ √x
0

y2

2
cos
(
x2
)∣∣∣∣y=

√
x

y=0

dx

=
1

2

∫ √x
0

x cos
(
x2
)
dx

Substitute u = x2 and du = 2x dx. Then

=
1

4

∫ π

0

cos(u) du = 0

Problem 3. Let F(x, y) = (yex+sin(y))i+(ex+x cos(y))j. Show that
∫
C
F ·dr

is independent of path and compute the integral, where C is the path from (0, 1)
to (5, 0).

Solution. Let P = yex + sin(y) and Q = ex + x cos(y). Then

∂P

∂y
= ex + cos(y) =

∂Q

∂x
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So F = P i +Qj has
∫
C
F · dr independent of path; hence F is conservative. In

fact F = ∇f , where f(x, y) = yex + x sin(y). So∫
C

F · dr =

∫
C

∇f · dr = f(5, 0)− f(0, 1) = 0− 1 = −1

Problem 4. A particle on the (x, y)-plane starts at the point (−1,−1), moves
along a horizontal straight line to the point (1,−1) and then up to the point
(1, 0). From this point it moves along the semicircle y =

√
1− x2 to the point

(−1, 0) and from there to the starting point along a vertical straight line. Use
Green’s Theorem to find the work done on this particle by the force field F =〈

5x, x
3

3 + xy2 + y
〉

.

Solution. Let D be the region enclosed by C. Then

W =

∫
C

F · dr =

∫
C

[
5x dx+

(
x3

3
+ xy2 + y

)
dy

]
Green

=

∫∫
D

(
x2 + y2

)
dA

Now D = D1 ∪D2, where

D1 =
{

(x, y)
∣∣ x2 + y2 ≤ 1, y ≥ 0

}
D2 = { (x, y) | −1 ≤ x ≤ 1 − 1 ≤ y ≤ 0 }

Then using iterated integrals∫∫
D2

(
x2 + y2

)
dA =

∫ 1

−1

∫ 0

−1

(
x2 + y2

)
dy dx

=

∫ 1

−1
x2y +

y3

3

∣∣∣∣y=0

y=−1
dx

=

∫ 1

−1

(
x2 +

1

3

)
dx

= 2

∫ 1

0

(
x2 +

1

3

)
dx

= 2

[
x3

3
+
x

3

]1
0

=
4

3

For the integral over D1 we use polar coordinates:∫∫
D2

(
x2 + y2

)
dA =

∫ π

0

∫ 1

0

r2 r dr dθ

=

∫ π

0

dθ ·
∫ 1

0

r3 dr

= π · r
4

4

∣∣∣∣1
0

=
π

4
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So

W =

∫∫
D1

(
x2 + y2

)
dA+

∫∫
D2

(
x2 + y2

)
dA =

4

3
+
π

4

Problem 5. Find the volume of the solid E bounded by x2 + y2 + z2 = 1 with
a removed conical section z =

√
x2 + y2.

Solution. In spherical coordinates the solid E can be described as

E =
{

(ρ, θ, ϕ)
∣∣∣ 0 ≤ θ ≤ 2π, 0 ≤ ρ ≤ 1,

π

4
≤ θ ≤ π

}
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So

Vol(E) =

∫∫∫
E

dV =

∫ π

π/4

∫ 2π

0

∫ 1

0

ρ2 sin(ϕ) dρ dθ dϕ

=

∫ 2π

0

dθ ·
∫ 1

0

ρ2 dρ ·
∫ π

π/4

dϕ

= 2π · 1

3
[− cos(ϕ)]

π
π/4 =

2π

3
[cos(ϕ)]

π/4
π

=
2π

3

[√
2

2
− (−1)

]

=
2π

3

[√
2

2
+

2

2

]
=
π

3

(√
2 + 2

)

Problem 6. Let S be the surface defined by r(u, v) = 〈u, u+ v, u− v〉 for u2 +
v2 ≤ 1. Compute

∫∫
S

(y2 + z2) dS.

Solution. To find the area element we compute

ru = 〈1, 1, 1〉
rv = 〈0, 1,−1〉

ru × rv = 〈−2, 1, 1〉

|ru × rv| =
√

6

Let D =
{

(u, v)
∣∣ u2 + v2 ≤ 1

}
. Then∫∫

S

(y2 + z2) dS =

∫∫
D

(
(u+ v)2 + (u− v)2

) √
6dAu,v

=
√

6

∫∫
D

(
2u2 + 2v2

)
dAu,v

= 2
√

6

∫ 2π

0

∫ 1

0

r2 r dr dθ

= 2
√

6

∫ 2π

0

dθ ·
∫ 1

0

r3 dr

= 2
√

6 · 2π · 1

4
=
√

6π

Problem 7. Find the absolute min and max values of f(x, y) = x2 + (y− 1)2

in the domain D =
{

(x, y)
∣∣ x2 + y2 ≤ 4

}
.
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Solution. The critical points within D are the solutions to ∇f = 0. Now

∂f

∂x
= 2x and

∂f

∂y
= 2(y − 1)

So ∇f = 0 implies x = 0 and y = 1. The corresponding critical value is
f(0, 1) = 0.

The critical points on the boundary of D are the solutions to ∇f = λ∇g,
where g(x, y) = x2 + y2. In components:

2x = λ2x and 2(y − 1) = λ2y

The first equation implies x = 0 or λ = 1. If x = 0, then y = ±2 and there
are values of λ which make the second equation consistent with the first. So
we have found two critical points (0, 2) and (0,−2), with corresponding critical
values f(0, 2) = 1 and f(0,−2) = 9.

If λ = 1, then the second equation reduces to 0 = −2, a contradiction. So
there are no more critical points.

The largest value of f on this domain is therefore f(0,−2) = 9, and the
smallest value f(0, 1) = 0.

Problem 8. Use the Divergence Theorem to calculate the surface integral
∫∫
S
F·

dS; that is, calculate the flux of F across S, where

F(x, y, z) =
(
cos(z) + xy2

)
i + xe−zj +

(
sin(y) + x2z

)
k

and S is the surface of the solid bounded by the paraboloid z = x2 + y2 and the
plane z = 4.

Solution. Let E be the solid described by
{

(x, y, z)
∣∣ 0 ≤ z ≤ x2 + y2, 0 ≤ z ≤ 4

}
The divergence of F is

∇ · F =
∂

∂x

(
cos(z) + xy2

)
+

∂

∂y
xe−z +

∂

∂z

(
sin(y) + x2z

)
= y2 + x2

So by the divergence theorem∫∫
S

F · dS =

∫∫
E

(
x2 + y2

)
dV

=

∫ 2π

0

∫ 2

0

∫ 4

0

r2 r dz dr dθ

=

∫ 2π

0

dθ ·
∫ 2

0

r3 dr ·
∫ 4

0

dz

= 2π · 4 · 4 = 32π.

Problem 9. Compute the integral of curlF over the surface S, where the vector
field F is

〈
y2, x, z2

〉
, and the surface S is the part of the paraboloid z = x2 + y2

that lies below the plane z = 1, oriented downward.

7



Solution. By Stokes’s Theorem,∫∫
S

∇× F · dS =

∫
∂S

F · dr =

∫
∂S

(
y2 dx+ x dy + z2 dz

)
The curve ∂S is the unit circle in the plane z = 1, but the induced orientation
is the negative (clockwise from above) orientation. We parametrize this curve
with x = cos(t), y = − sin(t), z = 1. Then dx = − sin(t) dt, dy = − cos(t) dt,
and dz = 0. So∫
∂S

(
y2 dx+ x dy + z2 dz

)
=

∫ 2π

0

[
(− sin(t))2 sin(t) + cos(t) (− cos(t)) + 12(0)

]
dt

= −
��

�
��

��*
0∫ 2π

0

sin(t)
3
dt−

∫ 2π

0

cos(t)
2
dt

The first integral is zero by the periodicity of sin(t)
3
. The second integral can

be computed with the double-angle trigonometric identities:

−
∫ 2π

0

cos(t)
2
dt = −1

2

∫ 2π

0

(1 + cos(2t)) dt

= −1

2
· 2π − 1

2��
��

���:
0∫ 2π

0

cos(2t) dt

again by symmetry. Hence ∫∫
S

∇× F · dS = −π

Bonus. Let Φ(x, y, t) = 1
4πσt exp

(
−x

2+y2

2σt

)
for t > 0, σ > 0. Find∫∫

R2

Φ(x, y, t) dAx,y

Solution. This is an improper integral, which we can switch to polar:∫∫
R2

Φ(x, y, t) dAx,y =
1

4πσt

∫ ∞
−∞

∫ ∞
−∞

exp

(
−x

2 + y2

2σt

)
dx dy

=
1

4πσt

∫ 2π

0

∫ ∞
0

exp

(
− r2

2σt

)
r dr dθ

=
2π

4πσt

∫ ∞
0

exp

(
− r2

2σt

)
r dr

=
1

2σt

∫ ∞
0

exp

(
− r2

2σt

)
r dr
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Let u = r2

2σt , and du = 2r dr
2σt . So r dr = σt du. Then

=
1

2

∫ ∞
0

exp(−u) du

= −1

2
exp(−u)

∣∣∣∣∞
0

=
1

2
.
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