Solutions to Old Final 1

Matthew Leingang

December 19, 2011

True/False.

1. Directional derivative $D_{\mathbf{u}}\mathbf{f} = 1$ for $\mathbf{f} = \langle x, 0, 0 \rangle$ and $\mathbf{u} = \langle 1, -1, 1 \rangle$.

Solution. False The directional derivative is

$$D_{\mathbf{u}}\mathbf{f}(x,y,z) = \frac{d}{dt}\mathbf{f}((x,y,z) + t\langle 1, -1, 1\rangle)\Big|_{t=0}$$
$$= \frac{d}{dt}\langle x + t, 0, 0\rangle\Big|_{t=0} = \langle 1, 0, 0\rangle$$

In particular, the directional derivative of a vector field is a vector field. (This problem goes beyond the usual scope of MATH-UA 123 Calculus III.) \Box

2. Normal vector to $z = x^2 + y^2$ at (x, y, z) = (1, 1, 2) is (2, 2, -1).

Solution. **True** On a surface given by an equation g(x,y,z)=0, the vector $\nabla f(x,y,z)$ is normal to the surface at (x,y,z). We have $g=x^2+y^2-z$, so $\nabla g=\langle 2x,2x,-1\rangle$ is normal at (x,y,z). If x=1 and y=1 then $\nabla g=\langle 2,2,-1\rangle$.

3. In spherical coordinates the equation $\varphi = \pi/3$ describes a plane.

Solution. False In spherical coordinates the equation $\varphi = \pi/3$ describes a cone.

4. When the vector function \mathbf{F} , curve C and surface S satisfy the hypotheses of Stokes's theorem, the theorem concludes that $\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \, dS$

Solution. False The right-hand side has a syntax error: a vector field cannot be integrated over a surface the way a function can. The statement would be true if the right-hand side were replaced with $\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S}$. \square

5. An irrotational vector field \mathbf{F} is one for which $\nabla \times \mathbf{F} = \mathbf{0}$.

Solution. True This is the definition, or at least equivalent to it. \Box

6. A conservative vector field \mathbf{F} is one for which $\nabla \cdot \mathbf{F} = 0$.

Solution. False The definition of conservative vector field is that there exists f such that $\nabla f = \mathbf{F}$. It is necessary then that $\nabla \times \mathbf{F} = \mathbf{0}$, but not that $\nabla \cdot \mathbf{F} = 0$ For instance, if $f(x, y, z) = x^2 + y^2 + z^2$, then $\mathbf{F} = \nabla f = \langle 2x, 2y, 2z \rangle$ is conservative by definition, But $\nabla \cdot \nabla \mathbf{F} = 6 \neq 0$.

7. If \mathbf{F} is a three-dimensional vector field, then $\operatorname{div} \mathbf{F}$ is a vector field.

Solution. False div F is a scalar field, i.e., a function. \Box

8. If \mathbf{F} is a three-dimensional vector field, then $\operatorname{curl} \mathbf{F}$ is a vector field.

Solution. True This is from the definition. \Box

9. If f(x,y) has a local maximum or minimum at (a,b) and the first-order partial derivatives of f(x,y) exist at (a,b), then $f_x(a,b) = 0$ OR $f_y(a,b) = 0$.

Solution. The statement with "OR" replace with "AND" is equivalent to Theorem 11.7.2 on page 645 of the text, so that would be true. Since "AND" is a stronger condition than "OR", the given statement is **True** as well. \Box

10. The field $\mathbf{F}(x, y, z) = \langle \sin(y), x \cos(y), -\sin(z) \rangle$ has a sink at the point (0, 0, 0).

Solution. True A sink of a vector field **F** is a place where $\nabla \cdot \mathbf{F} < 0$. We have

$$\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x} \sin(y) + \frac{\partial}{\partial y} x \cos(y) - \frac{\partial}{\partial z} \sin(z) = 0 - x \sin(y) - \cos(z)$$

which at the point (0,0,0) is -1.

Problem 1. Suppose S and C satisfy the hypotheses of Stokes's Theorem and f, g have continuous second-order partial derivatives. Compute

$$\int_{C} (f\nabla g + g\nabla f) \cdot d\mathbf{r}$$

Solution. If f and g have continuous second-order partial derivatives, then Clairaut's theorem applies and nothing strange will happen with mixed partial derivatives. Now

$$\begin{split} \int_{C} \left(f \nabla g + g \nabla f \right) \cdot d\mathbf{r} &= \int_{C} \nabla (fg) d\mathbf{r} \\ &= \iint_{S} \nabla \times \left(\nabla (fg) \right) \cdot d\mathbf{S} \\ &= 0 \end{split}$$

Problem 2. Evaluate the integral by reversing the order of integration:

$$\int_0^{\pi^{1/4}} \int_{y^2}^{\pi^{1/2}} y \cos(x^2) \, dx \, dy$$

Solution. The region integrated over can be described as

$$D = \left\{ (x,y) \mid 0 \le y \le \pi^{1/4}, \ y^2 \le x \le \pi^{1/2} \right\}$$
$$= \left\{ (x,y) \mid 0 \le x \le \sqrt{\pi}, \ 0 \le y \le \sqrt{x} \right\}$$

(draw it to see this) So

$$\int_0^{\pi^{1/4}} \int_{y^2}^{\pi^{1/2}} y \cos(x^2) \, dx \, dy = \int_0^{\sqrt{x}} \int_0^{\sqrt{x}} y \cos(x^2) \, dy \, dx$$
$$= \int_0^{\sqrt{x}} \frac{y^2}{2} \cos(x^2) \Big|_{y=0}^{y=\sqrt{x}} \, dx$$
$$= \frac{1}{2} \int_0^{\sqrt{x}} x \cos(x^2) \, dx$$

Substitute $u = x^2$ and du = 2x dx. Then

$$=\frac{1}{4}\int_{0}^{\pi}\cos(u)\ du=0$$

Problem 3. Let $\mathbf{F}(x,y) = (ye^x + \sin(y))\mathbf{i} + (e^x + x\cos(y))\mathbf{j}$. Show that $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path and compute the integral, where C is the path from (0,1) to (5,0).

Solution. Let $P = ye^x + \sin(y)$ and $Q = e^x + x\cos(y)$. Then

$$\frac{\partial P}{\partial y} = e^x + \cos(y) = \frac{\partial Q}{\partial x}$$

So $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ has $\int_C \mathbf{F} \cdot d\mathbf{r}$ independent of path; hence \mathbf{F} is conservative. In fact $\mathbf{F} = \nabla f$, where $f(x,y) = ye^x + x\sin(y)$. So

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \nabla f \cdot d\mathbf{r} = f(5,0) - f(0,1) = 0 - 1 = -1$$

Problem 4. A particle on the (x,y)-plane starts at the point (-1,-1), moves along a horizontal straight line to the point (1,-1) and then up to the point (1,0). From this point it moves along the semicircle $y=\sqrt{1-x^2}$ to the point (-1,0) and from there to the starting point along a vertical straight line. Use Green's Theorem to find the work done on this particle by the force field $\mathbf{F} = \langle 5x, \frac{x^3}{3} + xy^2 + y \rangle$.

Solution. Let D be the region enclosed by C. Then

$$W = \int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \left[5x \, dx + \left(\frac{x^{3}}{3} + xy^{2} + y \right) \, dy \right] \stackrel{\text{Green}}{=} \iint_{D} \left(x^{2} + y^{2} \right) \, dA$$

Now $D = D_1 \cup D_2$, where

$$D_1 = \{ (x, y) \mid x^2 + y^2 \le 1, \ y \ge 0 \}$$

$$D_2 = \{ (x, y) \mid -1 \le x \le 1 - 1 \le y \le 0 \}$$

Then using iterated integrals

$$\iint_{D_2} (x^2 + y^2) dA = \int_{-1}^1 \int_{-1}^0 (x^2 + y^2) dy dx$$

$$= \int_{-1}^1 x^2 y + \frac{y^3}{3} \Big|_{y=-1}^{y=0} dx$$

$$= \int_{-1}^1 \left(x^2 + \frac{1}{3} \right) dx$$

$$= 2 \int_0^1 \left(x^2 + \frac{1}{3} \right) dx$$

$$= 2 \left[\frac{x^3}{3} + \frac{x}{3} \right]_0^1$$

$$= \frac{4}{3}$$

For the integral over D_1 we use polar coordinates:

$$\iint_{D_2} (x^2 + y^2) dA = \int_0^{\pi} \int_0^1 r^2 r dr d\theta$$
$$= \int_0^{\pi} d\theta \cdot \int_0^1 r^3 dr$$
$$= \pi \cdot \frac{r^4}{4} \Big|_0^1 = \frac{\pi}{4}$$

So

$$W = \iint_{D_1} (x^2 + y^2) dA + \iint_{D_2} (x^2 + y^2) dA = \frac{4}{3} + \frac{\pi}{4}$$

Problem 5. Find the volume of the solid E bounded by $x^2 + y^2 + z^2 = 1$ with a removed conical section $z = \sqrt{x^2 + y^2}$.

Solution. In spherical coordinates the solid E can be described as

$$E = \left\{ \left. (\rho, \theta, \varphi) \; \right| \; 0 \leq \theta \leq 2\pi, \; 0 \leq \rho \leq 1, \; \frac{\pi}{4} \leq \theta \leq \pi \; \right\}$$

So

$$Vol(E) = \iiint_{E} dV = \int_{\pi/4}^{\pi} \int_{0}^{2\pi} \int_{0}^{1} \rho^{2} \sin(\varphi) \ d\rho \ d\theta \ d\varphi$$

$$= \int_{0}^{2\pi} d\theta \cdot \int_{0}^{1} \rho^{2} d\rho \cdot \int_{\pi/4}^{\pi} d\varphi$$

$$= 2\pi \cdot \frac{1}{3} \left[-\cos(\varphi) \right]_{\pi/4}^{\pi} = \frac{2\pi}{3} \left[\cos(\varphi) \right]_{\pi}^{\pi/4}$$

$$= \frac{2\pi}{3} \left[\frac{\sqrt{2}}{2} - (-1) \right]$$

$$= \frac{2\pi}{3} \left[\frac{\sqrt{2}}{2} + \frac{2}{2} \right]$$

$$= \frac{\pi}{3} \left(\sqrt{2} + 2 \right)$$

Problem 6. Let S be the surface defined by $\mathbf{r}(u,v) = \langle u, u+v, u-v \rangle$ for $u^2 + v^2 \leq 1$. Compute $\iint_S (y^2 + z^2) dS$.

Solution. To find the area element we compute

$$\mathbf{r}_{u} = \langle 1, 1, 1 \rangle$$

$$\mathbf{r}_{v} = \langle 0, 1, -1 \rangle$$

$$\mathbf{r}_{u} \times \mathbf{r}_{v} = \langle -2, 1, 1 \rangle$$

$$|\mathbf{r}_{u} \times \mathbf{r}_{v}| = \sqrt{6}$$

Let $D = \{ (u, v) \mid u^2 + v^2 \le 1 \}$. Then

$$\iint_{S} (y^{2} + z^{2}) dS = \iint_{D} ((u + v)^{2} + (u - v)^{2}) \sqrt{6} dA_{u,v}$$

$$= \sqrt{6} \iint_{D} (2u^{2} + 2v^{2}) dA_{u,v}$$

$$= 2\sqrt{6} \int_{0}^{2\pi} \int_{0}^{1} r^{2} r dr d\theta$$

$$= 2\sqrt{6} \int_{0}^{2\pi} d\theta \cdot \int_{0}^{1} r^{3} dr$$

$$= 2\sqrt{6} \cdot 2\pi \cdot \frac{1}{4} = \sqrt{6}\pi$$

Problem 7. Find the **absolute** min and max values of $f(x,y) = x^2 + (y-1)^2$ in the domain $D = \{(x,y) \mid x^2 + y^2 \le 4\}$.

Solution. The critical points within D are the solutions to $\nabla f = \mathbf{0}$. Now

$$\frac{\partial f}{\partial x} = 2x$$
 and $\frac{\partial f}{\partial y} = 2(y-1)$

So $\nabla f = \mathbf{0}$ implies x = 0 and y = 1. The corresponding critical value is f(0,1) = 0.

The critical points on the boundary of D are the solutions to $\nabla f = \lambda \nabla g$, where $g(x,y) = x^2 + y^2$. In components:

$$2x = \lambda 2x$$
 and $2(y-1) = \lambda 2y$

The first equation implies x = 0 or $\lambda = 1$. If x = 0, then $y = \pm 2$ and there are values of λ which make the second equation consistent with the first. So we have found two critical points (0,2) and (0,-2), with corresponding critical values f(0,2) = 1 and f(0,-2) = 9.

If $\lambda = 1$, then the second equation reduces to 0 = -2, a contradiction. So there are no more critical points.

The largest value of f on this domain is therefore f(0,-2)=9, and the smallest value f(0,1)=0.

Problem 8. Use the Divergence Theorem to calculate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$; that is, calculate the flux of \mathbf{F} across S, where

$$\mathbf{F}(x, y, z) = (\cos(z) + xy^2)\mathbf{i} + xe^{-z}\mathbf{j} + (\sin(y) + x^2z)\mathbf{k}$$

and S is the surface of the solid bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 4.

Solution. Let E be the solid described by $\{(x,y,z) \mid 0 \le z \le x^2 + y^2, \ 0 \le z \le 4\}$ The divergence of **F** is

$$\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x} \left(\cos(z) + xy^2 \right) + \frac{\partial}{\partial y} x e^{-z} + \frac{\partial}{\partial z} \left(\sin(y) + x^2 z \right) = y^2 + x^2$$

So by the divergence theorem

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{E} (x^{2} + y^{2}) dV$$

$$= \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{4} r^{2} r dz dr d\theta$$

$$= \int_{0}^{2\pi} d\theta \cdot \int_{0}^{2} r^{3} dr \cdot \int_{0}^{4} dz$$

$$= 2\pi \cdot 4 \cdot 4 = 32\pi.$$

Problem 9. Compute the integral of curl **F** over the surface S, where the vector field **F** is $\langle y^2, x, z^2 \rangle$, and the surface S is the part of the paraboloid $z = x^2 + y^2$ that lies below the plane z = 1, oriented downward.

Solution. By Stokes's Theorem,

$$\iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \int_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \int_{\partial S} \left(y^{2} dx + x dy + z^{2} dz \right)$$

The curve ∂S is the unit circle in the plane z=1, but the induced orientation is the negative (clockwise from above) orientation. We parametrize this curve with $x=\cos(t),\ y=-\sin(t),\ z=1$. Then $dx=-\sin(t)\ dt,\ dy=-\cos(t)\ dt,$ and dz=0. So

$$\int_{\partial S} (y^2 dx + x dy + z^2 dz) = \int_0^{2\pi} \left[(-\sin(t))^2 \sin(t) + \cos(t) (-\cos(t)) + 1^2(0) \right] dt$$
$$= -\int_0^{2\pi} \sin(t)^3 dt - \int_0^{2\pi} \cos(t)^2 dt$$

The first integral is zero by the periodicity of $sin(t)^3$. The second integral can be computed with the double-angle trigonometric identities:

$$-\int_0^{2\pi} \cos(t)^2 dt = -\frac{1}{2} \int_0^{2\pi} (1 + \cos(2t)) dt$$
$$= -\frac{1}{2} \cdot 2\pi - \frac{1}{2} \int_0^{2\pi} \cos(2t) dt$$

again by symmetry. Hence

$$\iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} = -\pi$$

Bonus. Let $\Phi(x,y,t) = \frac{1}{4\pi\sigma t} \exp\left(-\frac{x^2+y^2}{2\sigma t}\right)$ for $t>0,\ \sigma>0$. Find

$$\iint_{\mathbb{R}^2} \Phi(x, y, t) \, dA_{x, y}$$

Solution. This is an improper integral, which we can switch to polar:

$$\iint_{\mathbb{R}^2} \Phi(x, y, t) dA_{x,y} = \frac{1}{4\pi\sigma t} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2 + y^2}{2\sigma t}\right) dx dy$$
$$= \frac{1}{4\pi\sigma t} \int_{0}^{2\pi} \int_{0}^{\infty} \exp\left(-\frac{r^2}{2\sigma t}\right) r dr d\theta$$
$$= \frac{2\pi}{4\pi\sigma t} \int_{0}^{\infty} \exp\left(-\frac{r^2}{2\sigma t}\right) r dr$$
$$= \frac{1}{2\sigma t} \int_{0}^{\infty} \exp\left(-\frac{r^2}{2\sigma t}\right) r dr$$

8

Let
$$u = \frac{r^2}{2\sigma t}$$
, and $du = \frac{2r\,dr}{2\sigma t}$. So $r\,dr = \sigma t\,du$. Then

$$= \frac{1}{2} \int_0^\infty \exp(-u) \ du$$
$$= -\frac{1}{2} \exp(-u) \Big|_0^\infty = \frac{1}{2}.$$