Free Response

Be sure to show all your work neatly and indicate your final answer where appropriate.
FR1 (15 points)
(a) (7 points) Let L be the line given by $\mathbf{r}(t)=-2 \mathbf{i}+t \mathbf{j}-t \mathbf{k}$. Find the line containing the point $(1,4,2)$ and perpendicular to L (lines must intersect to be considered perpendicular).
Solution:

$$
\operatorname{proj}_{\langle 0,1,-1\rangle}(\langle 1,4,2\rangle-\langle-2,0,0\rangle)=\langle 0,1,-1\rangle
$$

Thus direction of the line is

$$
\langle 3,4,2\rangle-\langle 0,1,-1\rangle
$$

and the line is simply

$$
\mathbf{r}(t)=\langle 1+3 t, 4+3 t, 2+3 t\rangle
$$

(b) (8 points) Use the method of Lagrange multipliers to find the point on the line $2 x+3 y=6$ closest to the origin.
Solution:
Use distance squared instead. $f(x, y)=x^{2}+y^{2} \quad g(x, y)=2 x+3 y=6$.
(4 points) Set up Lagrange's equations $\nabla f=\lambda \nabla g$.

$$
\begin{aligned}
2 x & =2 \lambda \\
2 y & =3 \lambda \\
2 x+3 y & =6
\end{aligned}
$$

(4 point) Solve it.

$$
2 y=3 x \Longrightarrow 2 x+\frac{9}{2} x=6 \Longrightarrow x=\frac{12}{13}, y=\frac{18}{13} .
$$

FR2 (15 points) Let C be a piecewise smooth curve from $(0,0)$ to $(\pi / 2,0)$. Evaluate the following line integral

$$
\int_{C} \cos x \cos y d x+(1-\sin x \sin y) d y
$$

two ways:
(a) (8 points) by using the Fundamental Theorem of Line Integrals.

Solution:
Solve $\nabla f=\langle\cos x \cos y, 1-\sin x \sin y\rangle$.

$$
f(x, y)=y+\sin x \cos y+C
$$

FTLI says

$$
\int_{C} \nabla f \cdot d \mathbf{r}=f(\pi / 2,0)-f(0,0)=1
$$

(b) (7 points) by directly computing the integral along a convenient path. Solution:

$$
\begin{gathered}
\mathbf{r}(t)=t \mathbf{i} \quad 0 \leq t \leq \frac{\pi}{2} \\
\int_{C} P d x+Q d y=\int_{a}^{b} P(x(t), y(t)) x^{\prime}(t) d t+Q(x(t), y(t)) y^{\prime}(t) d t=\int_{0}^{\pi / 2} \cos t \cos 0 d t=\sin (\pi / 2)-\sin 0=1
\end{gathered}
$$

FR3 (15 points) Let $\mathbf{F}=-z^{2} \mathbf{i}+x y \mathbf{j}+2 x \mathbf{k}$ and let C be the triangle with vertices at $(0,0,0),(3,3,0)$, and $(0,0,6)$ (oriented in that order).
Use Stokes' Theorem to compute the line integral

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r} .
$$

Solution:
(2 points) State Stokes' Theorem correctly.

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\oint_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where S is the piece of the plane inside the triangle.
(2 points) Compute the curl of \mathbf{F}.

$$
\operatorname{curl} \mathbf{F}=-2-2 z \mathbf{j}+y \mathbf{k}
$$

(4 points) Parameterize the surface.

$$
\begin{aligned}
& \mathbf{r}(u, v)=\langle u, u, v\rangle \\
& 0 \leq u \leq 3 \\
& 0 \leq v \leq 6-2 u
\end{aligned}
$$

(2 points) Compute $\mathbf{r}_{u} \times \mathbf{r}_{v}=\mathbf{i}-\mathbf{j}$.
(5 points) Set up and compute iterated integral in u and v.

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{0}^{3} \int_{0}^{6-2 u}(2 v+2) d v d u=54
$$

FR4 (15 points) Let S be the upper hemisphere described by $x^{2}+y^{2}+z^{2}=16$ with $z \geq 0$ (oriented upward). We will use the Divergence Theorem to compute the flux of the vector field

$$
\mathbf{F}(x, y, z)=(x z-y x+2 x) \mathbf{i}+\left(2 y^{2}-2 x y-y z\right) \mathbf{j}+(2 z x-3 z y) \mathbf{k}
$$

through S as follows.
(a) (3 points) Let D be the part of the $x y$-plane under the hemisphere. Find \mathbf{n}, the outward-pointing normal vector to D.
Solution: $\mathbf{n}=-\mathbf{k}$
Give credit for overdoing it by parameterizing the surface and computing $\mathbf{r}_{u} \times \mathbf{r}_{v}$.
The question is not very clear about orientation (unfortunately). I would be forgiving.
(b) (3 point) Compute $\mathbf{F} \cdot \mathbf{n}$ on D.

Solution:

$$
-(2 z x-3 z y)=0
$$

on D.
(c) (3 points) Compute $\operatorname{div} \mathbf{F}$.

Solution:

$$
\nabla \cdot \mathbf{F}=(z-y+2)+(4 y-2 x-z)+(2 x-3 y)=2
$$

(d) (6 points) Use the Divergence Theorem to complete the computation. Solution:

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}+\iiint_{D} \mathbf{F} \cdot d \mathbf{S}=\iiint_{B^{+}} \operatorname{div} \mathbf{F} d V
$$

where B^{+}is the upper part of the solid sphere of radius 4 .
The second surface integral is 0 , so the flux through S is

$$
\iiint_{B^{+}} 2 d V=2 \frac{1}{2} \frac{4}{3} \pi 4^{3}=\frac{256}{3} \pi
$$

