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Problem Set 2

This problem set consists not only of problems similar to what you’ve seen, but also of unique problems you
may not have seen before. The purpose of the latter is for you to apply the concepts you’ve previously

learned to new, unfamiliar, and usually more interesting situations. In some cases, problems connect ideas
from multiple learning objectives.

Write full, clear solutions to the problems below. It is important that the logic of how you solved these
problems is clear. Although the final answer is important, being able to convey you understand the underly-
ing concepts is more important. The point weight of each problem is indicated prior to each question. This
problem set is graded out of ?? total points.

1. (4 points) A projectile is launched straight down an inclined plane as shown in he figure below. Show
that the greatest downhill range (the distance from the initial position to the point where the projectile
hits the ground) is achieved when the initial velocity vector bisects the angle ∠AOR between the vertical
line and the plane.

Solution: See figure below. Suppose that β denote the angle between the line AO and the hill.

Suppose that the initial position is at the origin. We tilt the picture so that the hill is along the x-
axis. This is okay, because we will adjust the direction of gravity accordingly. Hence, the acceleration
due to gravity is a(t) = 〈−g cosβ,−g sinβ〉.
(Note: β is in [π/2, π], so −g cosβ > 0, in agreement with our coordinate system pictured below).



Suppose that the projectile’s initial speed is v0, then the projectile’s initial velocity is v0 = 〈v0 cos(α), v0 sin(α)〉.
Then, the velocity function of the projectile is

v(t) = 〈v0 cosα− gt cosβ, v0 sinα− gt sinβ〉.

Furthermore, the position function of the projectile is

r(t) = 〈v0 cos(α)t− 0.5g cos(β)t2, v0 sin(α)t− 1

2
g sin(β)t2〉.

Then, the projectile hits the ground when the y-component of r(t) is zero. That is, when

v0 sin(α)t =
1

2
g sin(β)t2,

or, equivalently, when

t =
2v0
g sinβ

sinα.

So, the downhill range as a function of the angle α is the x-component of r
(

2v0
g sin β sinα

)
, which we

will now call D(α):

D(α) = v0 cos(α)t− 0.5g cos(β)t2

= t(v0 cosα− 0.5g cos(β)t)

=
2v0
g sinβ

sinα

(
v0 cosα− 0.5g cosβ

2v0
g sinβ

sinα

)
=

2v20
g sinβ

(
sinα cosα− 1

tanβ
sin2 α

)
.

So, to maximize the downhill range, take the derivative with respect to α,

D′(α) =
2v20
g sinβ

(
cos2 α− sin2 α− 2 sinα cosα

tanβ

)
,

and set it to zero. Hence, D′(α) = 0 when

cos2 α− sin2 α =
2 sinα cosα

tanβ

or, equivalently, when

tanβ =
2 sinα cosα

cos2 α− sin2 α
=

sin(2α)

cos(2α)
= tan(2α).

So, letting α = 0.5β will result in D′(α) = 0. We can check that α = 0.5β is in fact where D(α) is
maximized.

2. (4 points) The figure below shows an experiment with two marbles. Marble A was launched towards
marble B with launch angle α and initial speed v0 = |v0| > 0. At the same instant, marble B was
released to fall from rest at R tanα units directly above a spot R units horizontally downrange from A.

Show that the marbles collide regardless of the initial speed v0.



Solution: Since v0 denote the initial speed of marbleA, then its initial velocity is v0 = 〈v0 cosα, v0 sinα〉.
Let r(t) denote the position vector of marble A and s(t) denote the position vector of marble B.
The acceleration vectors function of marble A and of B are the same: 〈0,−g〉.
So, the velocity function of marble A is

〈v0 cosα, v0 sinα− gt〉

and that of marble B is
〈0,−gt〉.

Therefore, the position vectors of A and of B are:

r(t) = 〈v0 cosαt, v0 sinαt− 0.5gt2〉

and
s(t) = 〈R,R tanα− 0.5gt2〉.

We will first solve for the time t at which marble A’s horizontal position is R:

R = v0 cosαt,

which means that

t =
R

v0 cosα
.

At this time, marble A’s vertical position is

v0 sinα
R

v0 cosα
− 0.5g

(
R

v0 cosα

)2

= R tanα− 0.5gR2

v20 cos2 α

At this same time, marble B’s vertical position is

R tanα− 0.5g

(
R

v0 cosα

)2

= R tanα− 0.5gR2

v20 cos2 α
,

which is exactly the same as marble A’s vertical position at this time.

So, at time t = R
v0 cosα , marble A and B are at the same horizontal and vertical position, regardless

of v0. Thus, they always collide regardless of v0.

3. (3 points) Match each set of level curves with the appropriate graph of function. Briefly explain your
choices.



1.

2.

3.

4.

5.

6.

Solution: Level curves 1 corresponds to surface f. This set of level curves indicates that there are
two minima/maxima on the surface; surface f is the only one that has two peaks.

Level curves 2 correspond to surface e. This set of level curves indicates that there is an “8-fold
wavy pattern”, symmetric around the z-axis. This corresponds to surface e.



Level curves 3 correspond to surface a. This set of level curves indicates that there is a pattern of
maxima and minimarepeated in a grid parallel to the x and y-axes, which correspond to surface a.

Level curves 4 correspond to surface c. This set of level curves indicates that the z-value increases
(or decreases) quickly as we aproach the z-axis; this matches surface c.

Level curves 5 correspond to surface d. This set of level curves suggests a repeating pattern parallel
to the x-axis that matches surface d.

Level curves 6 correspond to surface b. This set of level curves indicates that there is a “4-fold wavy
pattern”, symmetric around the z-axis. This corresponds to surface b.

4. (4 points) For each of the following functions: (i) find the function’s domain, (ii) find the function’s
range, and (iii) sketch several of its level curves.

(a) f(x, y) = 2y−x
x+y+1

(b) f(x, y) = 3− |x| − 4|y|

(c) f(x, y) =
√
x2 − y2 − 16

Solution:

(a) Domain: D = {(x, y) ∈ R2 | x+y 6= −1}, since the function is not defined when the denominator
is zero. Geometrically, the domain of this function is the set of all points on R2 except those
along the line y = −1− x.

Range = (−∞,+∞).

(b) Domain: D = R2. Range = (−∞, 3].

(c) Domain: D = {(x, y) ∈ R2 | x2 − y2 ≥ 16}, the region outside the circle of radius 4, centered
at the origin (the domain includes points on the circle). Range = [0,+∞).

5. (3 points) The functions sin(x) and cos(x) have wavy, periodic graphs. Manipulate these function (or
devise your own) to find a function f(x, y) whose graph has the following general shapes:

(a) “Egg carton”

(b) “Wavy cylinder”

(c) “Circular wave”



Solution: Among other possible solutions:

(a) f(x, y) = cos(x) + sin(y)
Intuition: We would like a function that looks like a wave in each vertical x = k or y = k.
“Slicing” the surface above with a vertical plane x = k, we get a curve z = cos(k) + sin(y),
which is a sine wave (a function of y). Analogously, slicing the surface above with a vertical
plane y = k, we get a curve z = cos(x) + sin(k), we get a cosine wave (a function of x).

(b) f(x, y) = cos(x+ y)
Intuition: We would like a function whose contour plots are “diagonal” straight lines. For a fixed
“height” z = k, the level curve of cos(x+ y) = k is the straight line: y = −x+ arccos(k) + 2πn
(for integers n).

(c) f(x, y) = sin(x2 + y2)
Intuition: We would like a function whose contour plots are circles centered at (0, 0) in the
xy-plane. For a fixed “height” z = k, the level curves of sin(x2 + y2) = k consists of the circles:
x2 + y2 = arcsin(k) + 2πn (for integers n).

6. (4 points) (a) Use the squeeze theorem to evaluate

lim
(x,y)→(0,0)

tan(x) sin

(
1

|x|+ |y|

)
.

Solution: Since the range of sine is [−1, 1], we know that:

− tan(x) ≤ tan(x) sin

(
1

|x|+ |y|

)
≤ tan(x).

Taking the limit of both sides of each inequality:

lim
(x,y)→(0,0)

− tan(x) ≤ lim
(x,y)→(0,0)

tan(x) sin

(
1

|x|+ |y|

)
≤ lim

(x,y)→(0,0)
tan(x).

Since lim
(x,y)→(0,0)

tan(x) = 0, then

0 ≤ lim
(x,y)→(0,0)

tan(x) sin

(
1

|x|+ |y|

)
≤ 0.

By the squeeze theorem, lim
(x,y)→(0,0)

tan(x) sin

(
1

|x|+ |y|

)
= 0.

(b) State whether function f(x, y) = tan(x) sin
(

1
|x|+|y|

)
is continuous at (0, 0). Explain why or why

not.



Solution: The function f(x, y) is not continuous at (0, 0). Although the limit of f(x, y) as
(x, y) approaches (0, 0) exists (in particular, the limit is zero as we computed in part (a)), the
function is not defined at (0, 0). Therefore, it is not continuous at that point.

7. (4 points) Consider the function

f(x, y) =


xayb

x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)

where a, b are nonnegative integers.

For each of the following values of a and b, determine if the function f is continuous at (0, 0).

(a) a = 1, b = 5

Solution: Then, the function that we’re working with is

f(x, y) =


xy5

x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Note that xy5

x2+y2 = y2

x2+y2 xy
3. Since 0 ≤ y2

x2+y2 ≤ 1, then

0× xy3 ≤ xy5

x2 + y2
≤ 1× xy3

0 ≤ xy5

x2 + y2
≤ xy3

Taking the limit as (x, y) approaches (0, 0) of all sides of the inequalities:

lim
(x,y)→(0,0)

0 ≤ lim
(x,y)→(0,0)

xy5

x2 + y2
≤ lim

(x,y)→(0,0)
xy3,

0 ≤ lim
(x,y)→(0,0)

xy5

x2 + y2
≤ 0.

By the squeeze theorem, the limit of xy5

x2+y2 as (x, y) approaches (0, 0) is zero, which is equal to

the value of f(x, y) at (0, 0). Therefore, f is continuous at (0, 0).

(b) a = 0, b = 1

Solution: Then, the function that we’re working with is

f(x, y) =


y

x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Note that we cannot use squeeze theorem as we did in part (a). In fact, we can show that f
goes to infinity as (x, y) approaches (0, 0) along the y-axis.

Consider points along the y-axis, approaching (0, 0): (0, y) with y approaching 0. Then,

lim
(0,y)→(0,0)

y

x2 + y2
= lim
y→0

y

y2
= lim
y→0

1

y
= +∞.



Therefore, f(x, y) is not continuous at (0, 0).

8. (4 points) The following figure shows a contour diagram for the temperature T (in Celcius) along a wall
in a heated room as a function of distance x in meters along the wall and time t in minutes. Estimate
∂T/∂x and ∂T/∂t at the given points. Give the units and interpret your answers.

(a) x = 15, t = 20 (b) x = 5, t = 12

Solution:

(a) We can estimate ∂T
∂t at the point (x, y) = (15, 20) by considering the change in temperature

between points (15, 15) and (15, 25) (that is, holding x constant at 15 while varying the time
t). Since T (15, 15) ≈ 20 and T (15, 25) ≈ 25, then

∂T

∂t
(15, 20) ≈ ∆T

∆t
≈ 25− 20

25− 15
= 0.5.

Similarly, by considering the change in temperature from point (10, 20) to point (25, 20) (holding
t constant at 20), we get a change of temperature from 25 to 20. So,

∂T

∂x
(15, 20) ≈ ∆T

∆x
≈ 20− 25

25− 10
= −1

3
.

(b) We can estimate ∂T
∂t at the point (x, y) = (5, 12) by considering the change in temperature

between points (5, 7) and (5, 40) (that is, holding x constant at 5 while varying the time t).
Since T (5, 7) ≈ 25 and T (5, 40) ≈ 30, then

∂T

∂t
(5, 12) ≈ ∆T

∆t
≈ 30− 25

40− 7
=

5

33
.

Similarly, by considering the change in temperature from point (2, 12) to point (7, 12) (holding
t constant at 12), we get a change of temperature from 2 to 7. So,

∂T

∂x
(15, 20) ≈ ∆T

∆x
≈ 25− 30

7− 2
= −1.

9. (4 points) A function f(x, y, z) is called a harmonic function if its second-order partial derivatives exist



and if it satisfies Laplace’s equation:

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
= 0.

(a) Is f(x, y, z) = x2 + y2 − 2z2 harmonic? What about f(x, y, z) = x2 − y2 + z2?

(b) We may generalize Laplace’s equation to functions of n variables as:

∂2f

∂x21
+
∂2f

∂x22
+ . . .+

∂2f

∂x2n
= 0.

Give an example of a harmonic function of 7 variables, and verify that your example is correct.

Solution:

(a) For f(x, y, z) = x2 + y2 − 2z2,

fxx(x, y, z) = 2, fyy(x, y, z) = 2, fzz(x, y, z) = −4.

So, fxx + fyy + fzz = 2 + 2 + (−4) = 0, which shows that f is harmonic.

For the function f(x, y, z) = x2 − y2 + z2,

fxx(x, y, z) = 2, fyy(x, y, z) = −2, fzz(x, y, z) = 2.

So, fxx + fyy + fzz = 2 + (−2) + 2 = 2 6= 0, which shows that f is not harmonic.

(b) One example: f(x1, x2, . . . , xn) = x21 + x22 + . . . + x26 − 6x27. Then, for each variable xi where
1 ≤ i ≤ n− 1, we can show that fxixi

= 2. Furthermore, fx7x7
= −12. So,

fx1x1
+ . . .+ fx6x6

+ fx7x7
= 2× 6− 12 = 0,

which shows that f is a harmonic function.

(Grading note: any example involving 3 variables or more that satisfies Laplace’s equation is
acceptable. The solution must verify that Laplace’s equation is satisfied.)

10. (4 points) A friend was asked to find the equation of the tangent plane to the surface z = x3− y2 at the
point (x, y) = (2, 3). The friend’s answer was

z = 3x2(x− 2)− 2y(y − 3)− 1.

(a) At a glance, without doing any computation, how do you know that this is incorrect? What mistake
did the friend make?

Solution: This equation is not a linear equation!

(b) Answer the question correctly.

Solution: The equation is z = 12(x− 2)− 6(y− 3)− 1 (i.e. evaluate the partial derivatives at
(x, y) = (2, 3)).

11. (4 points) Wind chill, a measure of the apparent temperature felt on exposed skin, is a function of air
temperature T and wind speed v. The following table contains the values of the wind chill W (v, T ) for



some values of v and T .
T = 10 T = 5 T = 0 T = −10

v = 5 1 −5 −11 −22
v = 20 −9 −15 −22 −35
v = 25 −11 −17 −24 −37
v = 30 −12 −19 −26 −39

(a) Find a linearization of the function W (v, T ) at the point (v, T ) = (25, 5).

Solution: The linearization:

L(v, T ) = W (25, 5) +
∂W

∂v
(25, 5) (v − 25) +

∂W

∂T
(25, 5) (t− 5).

We use the table to approximate ∂W
∂v (25, 5) and ∂W

∂T (25, 5):

∂W

∂v
(25, 5) ≈ W (25, 5)−W (30, 5)

25− 30
= −2

5
,

∂W

∂T
(25, 5) ≈ W (25, 5)−W (25, 10)

5− 10
=

6

5
.

Therefore, the linearization is

L(v, T ) = −17− 0.4(v − 25) + 1.2 (t− 5).

(b) Use the above linearization to approximate W (24, 6).

Solution:
W (24, 6) ≈ L(24, 6) = −17− 0.4× (−1) + 1.2× 1 = −15.4

(c) Use the above linearization to approximate W (5,−10), and explain why this value is very different
from the actual value in the table above.

Solution:

W (5,−10) ≈ L(5,−10) = −17− 0.4× (−20) + 1.2× (−15) = −27.

There is a difference of -5 units between this and the actual value of W (5,−10) = −22. The
estimation of W (5,−10) using the linearization at (25, 5) is not accurate because the point
(5,−10) is not close to the point (25, 5). The linearization is only accurate for points close to
the point at which the linearization is computed.

12. (4 points) Find the values of ∂z
∂x and ∂z

∂y at the given point:

xey + yez + 2 ln(x) = 2 + 3 ln(2), (1, ln(2), ln(3)).

Solution: We use implicit differentiation. First, find ∂z
∂x :

ey + yez
∂z

∂x
+

2

x
= 0,

∂z

∂x
= −e

y + 2/x

yez
.



Evaluate at the point (1, ln(2), ln(3)):

∂z

∂x
= − eln(2) + 2

ln(2)eln(3)
= − 4

3 ln(3)
.

Next, find ∂z
∂y :

xey + ez + yez
∂z

∂y
= 0,

∂z

∂y
= −xe

y + ez

yez
.

Evaluate at (1, ln(2), ln(3)):
∂z

∂y
= −e

ln(2) + eln(3)

ln(2)eln(3)
= − 5

3 ln(3)
.

13. (4 points) If f(u, v, w) is differentiable and u = x− y, v = y − z, and w = z − x, show that

∂f

∂x
+
∂f

∂y
+
∂f

∂z
= 0.

Solution:

∂f

∂x
=

∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x
+
∂f

∂w

∂w

∂x

=
∂f

∂u
+ 0− ∂f

∂w
∂f

∂y
=

∂f

∂u

∂u

∂y
+
∂f

∂v

∂v

∂y
+
∂f

∂w

∂w

∂y

= −∂f
∂u

+
∂f

∂v
+ 0

∂f

∂z
=

∂f

∂u

∂u

∂z
+
∂f

∂v

∂v

∂z
+
∂f

∂w

∂w

∂z

= 0− ∂f

∂v
+
∂f

∂w

∂f

∂x
+
∂f

∂y
+
∂f

∂z
=

(
∂f

∂u
− ∂f

∂w

)
+

(
−∂f
∂u

+
∂f

∂v

)
+

(
−∂f
∂v

+
∂f

∂w

)
= 0.


