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Problem Set 4

This problem set consists not only of problems similar to what you’ve seen, but also of unique problems you
may not have seen before. The purpose of the latter is for you to apply the concepts you’ve previously

learned to new, unfamiliar, and usually more interesting situations. In some cases, problems connect ideas
from multiple learning objectives.

Write full, clear solutions to the problems below. It is important that the logic of how you solved these
problems is clear. Although the final answer is important, being able to convey you understand the underly-
ing concepts is more important. The point weight of each problem is indicated prior to each question. This
problem set is graded out of 50 total points.

1. (5 points) The figure below shows the distribution of temperature, in ◦C, in a 5 meter by 5 meter heated
room. Using Riemann sums, estimate the average temperature in the room.

Solution: Call the region (the room) R, and let T (x, y) denote the temperature at point (x, y) in
R. Then, the average temperature is:

1

Area of room

∫∫
R

T (x, y) dA.

The total area of the room is 25 square meter. To estimate the above integral, divide the room into
25 squares, each with dimension 1 meter by 1 meter. So, the area of each small square is 1 square
meter. Choose one sample point from each square and find the temperature at this chosen point.
One possibility is as follows:



Then,
∫∫
R
T (x, y) dA is approximately the sum of the above temperatures times 1 square meter,

which is
24 + 23 + 22 + . . . 27 + 26 + 26 = 630.5.

So, the average temperature is approximately 630.5
25 = 25.22.

2. (5 points) Sketch the solid that lies between the surface z = 2xy
x2+1 and the plane z = x + 2y and is

bounded by the planes x = 0, x = 2, y = 0, and y = 4. Then, find its volume.

Solution: The graphs below are the solid from different angle.



The plane z = x+ 2y is above the surface z = 2xy
x2+1 . Thus, the volume is∫ 2

0

∫ 4

0

(x+ 2y − 2xy

x2 + 1
)dydx =

∫ 2

0

[
xy + y2 − xy2

x2 + 1

]4
0

dx

=

∫ 2

0

(4x+ 16− 16x

x2 + 1
)dx

=

∫ 2

0

(4x+ 16)dx−
∫ 2

0

16x

x2 + 1
dx (∗)

=
[
2x2 + 16x

]2
0
−
[
8 ln (x2 + 1)

]2
0

= 40− 8 ln 5

(*) is because ∫ 2

0

16x

x2 + 1
dx =

∫
8

u
du =

[
8 ln (x2 + 1)

]2
0

= 8 ln 5

3. (5 points) Evaluate the double integral ∫ ∫
R

y

x2y2 + 1
dA,

over the region R: 0 ≤ x ≤ 1, −1 ≤ y ≤ 2.

Solution:∫ 2

−1

∫ 1

0

y

x2y2 + 1
dxdy =

∫ 2

−1

[
arctanxy

]1
0

dy (∗)

=

∫ 2

−1
arctan ydy

=

[
y arctan y − 1

2
ln (1 + y2)

]2
−1

(∗∗)

= 2 arctan 2 =
1

2
ln 5− (− arctan(−1)− 1

2
ln 2

= 2 arctan 2− arctan 1 +
1

2
ln

2

5

Note: (*) and (**) are explained as following.
Let x2y2 = tan2 θ ⇒ θ = arctanxy. We know 1 + tan2 θ = sec2 θ. And dx

dθ = sec2 θ ⇒ dx = sec2 θdθ.
Thus, ∫

y

x2y2
dx =

∫
y

tan2 θ + 1
sec2 θdθ

=

∫
y

sec2 θ
sec2 θdθ

=

∫
ydθ

= arctanxy



Let u = arctan y and v′ = 1. Then using integration by parts,∫
arctan ydy = y arctan y −

∫
y

1 + y2
dy

= y arctan y − 1

2
ln 1 + y2

4. (5 points) Sketch the region of integration and evaluate the integral:∫ 4

1

∫ y

√
y

x2y3 dx dy.

Solution: Skectch:
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∫ 4

1

∫ y

√
y

x2y3 dx dy =

∫ 4

1

x3y3

3

∣∣∣∣y√
y

dy

=
1

3

∫ 4

1

y6 − y9/2 dy

=
1

3

(
y7

7
− y11/2

11/2

)∣∣∣∣4
1

=
47 − 1

21
− 411/2 − 1

33/2
=

151555

231
≈ 656.082.

5. (5 points) (a) Sketch the region in the xy-plane that is bounded by the x-axis, y = x, and x+ y = 2.

Solution: Skectch:
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(b) Express the integral of f(x, y) over this region in terms of iterated integrals in two ways. (That is,
formulate the integral in two ways: in one, use dx dy; in the other, use dy dx.)

Solution: Let R denote the region described. Then,∫∫
R

f(x, y) dA =

∫ 1

0

∫ x

0

f(x, y) dy dx+

∫ 2

1

∫ 2−x

0

f(x, y) dy dx

=

∫ 1

0

∫ 2−y

y

f(x, y) dx dy

(c) Using one of your answers to part (b), evaluate the integral exactly for
f(x, y) = x.

Solution: ∫∫
R

x dA =

∫ 1

0

∫ 2−y

y

x dx dy

=

∫ 1

0

x2

2

∣∣∣∣2−y
y

dy

=
1

2

∫ 1

0

(4− 2y + y2)− y2 dy

=
1

2

(
4y − y2

)∣∣1
0

= 3/2.

6. (5 points) If R is the region x+ y ≥ a, x2 + y2 ≤ a2, with a > 0, evaluate the integral∫
R

xy dA.



Solution: The two equations intersect at (0, a) and (a, 0). Thus,∫
R

xy dA =

∫ a

0

∫ √a2−x2

a−x
xy dy dx

=
1

2

∫ a

0

(a2x− x3 − ax+ x2) dx

=
1

2

(
a4

2
− a4

4
− a3

2
+
a3

3

)
=
a3

24

7. (5 points) (a) Sketch the level curves of the function f(x, y) = 4 − x2 − 2y2, at levels k = 4, 3, 0, and
−5.

Solution: Sketch:
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(b) What region R in the xy-plane maximizes the value of∫ ∫
R

(4− x2 − 2y2) dA ?

Give reasons for your answer.

Solution: Interpret the double integral
∫∫
R

(4− x2 − 2y2) dA as the volume “under the graph
of z = f(x, y)”, where f(x, y) = 4 − x2 − 2y2. If the graph z = f(x, y) is below the xy-plane,
then the volume will be counted as a negative number.

Note that f(x, y) is nonnegative inside the ellipse E = {(x, y) | x
2

2 + y2 ≤ 2}, and is negative
outside it. So, the region in the xy-plane that maximizes the volume under the surface z =
f(x, y) is precisely the ellipse E above: choose

R = E = {(x, y) | x
2

2
+ y2 ≤ 2}.

(c) Then, express the double integral over the region R you specified above as an iterated integral.



Solution: The range of the x-coordinates of points (x, y) in E is: x2

2 ≤ 2, so −2 ≤ x ≤ 2.

Then, for each x in this range, the points (x, y) is in E if y is in the range: y2 ≤ 2− x2

2 , or

−
√

2− x2

2
≤ y ≤

√
2− x2

2
.

Hence, the double integral over R chosen above is:

∫∫
R

4− x2 − 2y2 dA =

∫ 2

−2

∫ √
2− x2

2

−
√

2− x2

2

4− x2 − 2y2 dy dx.

8. (5 points) Express D, the shaded region below, as a union of regions of type I or type II and evaluate

the integral

∫ ∫
D

y dA.

Solution: ∫∫
D

y dA =

∫∫
D1

y dA+

∫∫
D2

y dA+

∫∫
D3

y dA

=

∫ 1

0

∫ y−y3

0

y dx dy +

∫ 0

−1

∫ (x+1)2

0

y dy dx+

∫ 0

−1

∫ y−y3

−1
y dx dy

=

∫ 1

0

y(y − y3)dy +

∫ −1
0

1

2
(x+ 1)4dx+

∫ 0

−1
(y(y − y3) + y)dy

= 2

∫ 1

−1
y(y − y3)dy +

∫ −1
0

1

2
(x+ 1)4dx+

∫ 0

−1
(y(y − y3) + y)dy

= 2

(
1

3
− 1

5

)
+

1

2

(
1

5

)
− 1

2

= − 4

30



9. (5 points) (a) Sketch the region of integration of∫ 1

0

∫ √4−x2

√
1−x2

x dy dx+

∫ 2

1

∫ √4−x2

0

x dy dx.

Solution: Sketch:
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(b) Evaluate the integral in part (a) by first converting into polar coordinates.

Solution:∫ 1

0

∫ √4−x2

√
1−x2

x dy dx+

∫ 2

1

∫ √4−x2

0

x dy dx =

∫ π/2

0

∫ 2

1

r cos(θ) r dr dθ

=

∫ π/2

0

∫ 2

1

r2 cos(θ) dr dθ

=

∫ π/2

0

r3

3
cos(θ)

∣∣∣∣2
1

dθ

=

∫ π/2

0

7

3
cos(θ) dθ

=
7

3
sin(θ)

∣∣∣∣π/2
0

=
7

3
.

10. (5 points) Find the volume of an ice cream cone bounded by the hemisphere z =
√

8− x2 − y2 and the

cone z =
√
x2 + y2.

Solution: First, find the intersection between the hemisphere and the ice cream cone:

8− x2 − y2 = x2 + y2, z =
√
x2 + y2

or equivalently,
x2 + y2 = 4, z = 2

a circle of radius 2 parallel to the xy-plane, centered at (0, 0, 2).

So, the region of integration, call it D, should be the circle of radius 2 in the xy-plane, centered at
the origin. The equation in polar coordinate is: r = 2, 0 ≤ θ ≤ 2. The integrand should be the
z-range so that for each (x, y), the point (x, y, z) is inside the ice cream cone:√

x2 + y2 ≤ z ≤
√

8− x2 − y2.



Therefore, the volume is:∫∫
D

√
8− x2 − y2 −

√
x2 + y2 dA =

∫ 2π

0

∫ 2

0

(
√

8− r2 − r) r dr dθ

=

∫ 2π

0

∫ 2

0

√
8− r2 r dr dθ −

∫ 2π

0

∫ 2

0

r2 dr dθ

= 2π
16
√

2

3
− 2π

8

3
=

16(2
√

2− 1)π

3
.


