Quiz #3 for Calculus 3 (MATH-UA.0123-001)

Problem 1. Let $\mathbf{r}(t)$ be a curve, and assume that $|\mathbf{r}(t)| = c$ for all $t \in \mathbb{R}$, where c > 0 is a constant. Show that $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are orthogonal for all t such that $\mathbf{r}'(t)$ exists. [2 points]

Problem 2. Compute the arc length function s(t) for the helix $\mathbf{r}(t) = (\cos(t), \sin(t), t)$ starting from t = 0. [2 points]

Problem 3. Compute the curvature of the helix (that is, r(t) from Problem 3) using any formula you like. [3 points]

Problem 4. Compute the unit normal and binormal vectors of the helix. [3 points]