Quiz \#5 for Calculus 3 (MATH-UA.0123-001)

Problem 1. Let $y=f(\vec{x})$ be a scalar-valued function of a vector \vec{x}. If \vec{x}^{*} is a critical point of f, what condition must f satisfy? [2 points]

Problem 2. Let $f(x, y)=\frac{1}{2} A x^{2}+B x y+\frac{1}{2} C y^{2}+D x+E y+F$. Find f's critical points. Write down any assumptions you make on the coefficients of f (that is: A, B, C, D, E, and F). [4 points]

Problem 3. For the same f as in Problem 2, check the conditions under which these critical points are local maxima, local minima, or neither. Do you notice anything? [4 points]

