Quiz \#7 for Calculus 3 (MATH-UA.0123-001)

For these problems, consider the region bounded below by $z_{0}(x, y)=-x^{2}-y^{2}$ and from above by $z_{1}(x, y)=\sqrt{x^{2}+y^{2}}$, and which is outside the sphere $x^{2}+y^{2}+z^{2}=1$ and inside the sphere $x^{2}+y^{2}+z^{2}=2$.

Problem 1. This solid is radially symmetric about the z axis. Why? [1 point]

Problem 2. Since it's radially symmetric about the z axis, we can learn everything we need to know about it by consider its cross-section in any plane that goes through the z axis. Sketch its cross-section in the $x z$-plane. Carefully label the axes (including ticks on the axes showing number values), and whether each curve comes from z_{0}, z_{1}, the inner sphere, or the outer sphere. [3 points]

Problem 3. Set up the polar integral to compute the volume of this solid [3 points], and evaluate it [3 points]. Hint: use your drawing from the last part!!!

