Quiz \#8 for Calculus 3 (MATH-UA.0123-001)

Problem 1. A solid E lies within the cylinder $x^{2}+y^{2}=4$, below the plane $z=4$, and above the paraboloid $4-x^{2}-y^{2}$. The density (units: $\mathrm{kg} / \mathrm{m}^{3}$) at any point is equal to C times the distance to the z axis. Find the mass of E (in kg). [5 points]

This integral is easiest to do in cylindrical coordinates. Since $r^{2}=x^{2}+y^{2}$, we have:

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{2} \int_{4-r^{2}}^{4} C r^{2} d z d r d \theta & =2 \pi C \int_{0}^{2} r^{2} \int_{4-r^{2}}^{4} d z d r \\
& =2 \pi C \int_{0}^{2} r^{2}\left[4-\left(4-r^{2}\right)\right] d r \\
& =2 \pi C \int_{0}^{2} r^{4} d r=\left.2 \pi C \frac{1}{5} r^{5}\right|_{r=0} ^{2}=\frac{64}{5} \pi C
\end{aligned}
$$

Problem 2. Evaluate $\iiint_{E}\left(x^{2}+y^{2}\right) d V$, where E is the region bounded by the spheres $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=9$. Hint: $\sin (\phi)^{3}=\frac{1}{4}(3 \sin (\phi)-\sin (3 \phi))$. [5 points]

Since we're integrating over the spherical shell with inner radius $r_{0}=2$ and outer radius $r_{1}=3$, we should use spherical coordinates. To rewrite the integrand using spherical coordinates, we can simply substitute:

$$
x^{2}+y^{2}=\rho^{2} \cos (\theta)^{2} \sin (\phi)^{2}+\rho^{2} \sin (\theta)^{2} \sin (\phi)^{2}=\rho^{2}\left[\cos (\theta)^{2}+\sin (\theta)^{2}\right] \sin (\phi)^{2}=\rho^{2} \sin (\phi)^{2} .
$$

Alternatively, we can notice that:

$$
x^{2}+y^{2}=r^{2}=(\rho \sin (\phi))^{2}=\rho^{2} \sin (\phi)^{2} .
$$

We integrate:

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{2}^{3}=\rho^{4} \sin (\phi)^{3} d \rho d \phi d \theta=2 \pi \int_{0}^{\pi} \sin (\phi)^{3} d \phi \int_{2}^{3} \rho^{4} d \rho
$$

Using the hint, we can compute $\int_{0}^{\pi} \sin (\phi)^{3} d \phi=4 / 3$. At the same time, $\int_{2}^{3} \rho^{4} d \rho=211 / 5$. Hence, the integral is:

$$
\iiint_{E}\left(x^{2}+y^{2}\right) d V=2 \pi \cdot \frac{4}{3} \cdot \frac{211}{5}=\frac{1688}{15} \pi=353.533 \ldots
$$

