Quiz \#9 for Calculus 3 (MATH-UA.0123-001)

Problem 1. Let $\boldsymbol{F}(x, y)=(3+2 x y) \boldsymbol{i}+\left(x^{2}-3 y^{2}\right) \boldsymbol{j}$. Find a function f such that $\boldsymbol{F}=\nabla f$. Be careful of any constants of integration. [3 points]

Let $f(x, y)=3 x+x^{2} y-y^{3}+C$, where C is a constant. Then:

$$
f_{x}(x, y)=3+2 x y, \quad f_{y}(x, y)=x^{2}-3 y^{2}
$$

from which we can conclude $\boldsymbol{F}(x, y)=\nabla f(x, y)$. Note that there are infinitely many different choices of f, each corresponding to a different constant $C \in \mathbb{R}$.

Problem 2. For the same \boldsymbol{F} as in Problem 1, evaluate the line integral $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$, where C is the curve given by $\boldsymbol{r}(t)=e^{t} \sin (t) \boldsymbol{i}+e^{t} \cos (t) \boldsymbol{j}$, for t such that $0 \leq t \leq \pi$. [3 points]

Since \boldsymbol{F} is a conservative (or "gradient") vector field, we can compute the line integral $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ by taking the difference between f evaluated at the start and end of the curve C. Since C is parametrized from $t=0$ to $t=\pi$, and its endpoints are:

$$
\boldsymbol{r}(0)=(0,1), \quad \boldsymbol{r}(\pi)=\left(0,-e^{\pi}\right),
$$

we have:

$$
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=f(0,1)-f\left(0,-e^{\pi}\right)=\left(e^{3 \pi}+C\right)-\left((-1)^{3}+C\right)=e^{3 \pi}+1
$$

Problem 3. Let C be the circle with radius 2 centered at the origin. Evaluate the line integral $\oint_{C}(x-y) d x+(x+y) d y$ directly and using Green's theorem. [2 points]

Let D denote the disk of radius 2 centered at the origin, so that $\partial D=C$. Then, if we let $P=x-y$ and $Q=x+y$ (note that $P_{y}=-1$ and $Q_{x}=1$), using Green's theorem we can write:

$$
\begin{aligned}
\oint_{C}(x-y) d x+(x+y) d y & =\oint_{\partial D} P d x+Q d y=\iint_{D}\left(Q_{x}-P_{y}\right) d A \\
& =\iint_{D}(1-(-1)) d A=2 \iint_{D} d A=8 \pi
\end{aligned}
$$

The last equality follows by observing that $\iint_{D} d A$ is the area of the disk of radius 2 , which is $\pi r^{2}=4 \pi$, where $r=2$.

To compute the line integral directly, we need to parametrize C and do the line integral. We can parametrize C by writing:

$$
\boldsymbol{r}(t)=2(\cos (t), \sin (t)), \quad \boldsymbol{r}^{\prime}(t)=2(-\sin (t), \cos (t))
$$

If we let $\boldsymbol{F}(x, y)=P(x, y) \boldsymbol{i}+Q(x, y) \boldsymbol{j}$, then:

$$
\begin{aligned}
\oint_{C} P d x+Q d y & =\int_{0}^{2 \pi} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \boldsymbol{r}^{\prime}(t) d t \\
& =4 \int_{0}^{2 \pi}(\cos (t)-\sin (t), \cos (t)+\sin (t)) \cdot(-\sin (t), \cos (t)) d t \\
& =4 \int_{0}^{2 \pi}\left(-\sin (t) \cos (t)+\sin (t)^{2}+\cos (t)^{2}+\sin (t) \cos (t)\right) d t \\
& =4 \int_{0}^{2 \pi} d t=4 \cdot 2 \pi=8 \pi
\end{aligned}
$$

By comparing the two approaches you can see that Green's theorem lets us compute this integral much more simply and with a lower likelihood of making mistakes.

