Problem 1. Let $F(x, y) = (3 + 2xy)i + (x^2 - 3y^2)j$. Find a function f such that $F = \nabla f$. Be careful of any constants of integration. [3 points]

Let $f(x,y) = 3x + x^2y - y^3 + C$, where C is a constant. Then:

 $f_x(x,y) = 3 + 2xy,$ $f_y(x,y) = x^2 - 3y^2,$

from which we can conclude $\mathbf{F}(x, y) = \nabla f(x, y)$. Note that there are infinitely many different choices of f, each corresponding to a different constant $C \in \mathbb{R}$.

Problem 2. For the same F as in Problem 1, evaluate the line integral $\int_C F \cdot dr$, where C is the curve given by $r(t) = e^t \sin(t)i + e^t \cos(t)j$, for t such that $0 \le t \le \pi$. [3 points]

Since \mathbf{F} is a conservative (or "gradient") vector field, we can compute the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ by taking the difference between f evaluated at the start and end of the curve C. Since C is parametrized from t = 0 to $t = \pi$, and its endpoints are:

$$\mathbf{r}(0) = (0, 1), \qquad \mathbf{r}(\pi) = (0, -e^{\pi}),$$

we have:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(0,1) - f(0,-e^{\pi}) = \left(e^{3\pi} + C\right) - \left((-1)^3 + C\right) = e^{3\pi} + 1.$$

Problem 3. Let C be the circle with radius 2 centered at the origin. Evaluate the line integral $\oint_C (x-y)dx + (x+y)dy$ directly and using Green's theorem. [2 points]

Let D denote the disk of radius 2 centered at the origin, so that $\partial D = C$. Then, if we let P = x - y and Q = x + y (note that $P_y = -1$ and $Q_x = 1$), using Green's theorem we can write:

$$\oint_C (x-y)dx + (x+y)dy = \oint_{\partial D} Pdx + Qdy = \iint_D (Q_x - P_y)dA$$
$$= \iint_D (1 - (-1))dA = 2 \iint_D dA = 8\pi.$$

The last equality follows by observing that $\iint_D dA$ is the area of the disk of radius 2, which is $\pi r^2 = 4\pi$, where r = 2.

To compute the line integral directly, we need to parametrize C and do the line integral. We can parametrize C by writing:

$$r(t) = 2(\cos(t), \sin(t)),$$
 $r'(t) = 2(-\sin(t), \cos(t)).$

If we let $\boldsymbol{F}(x,y) = P(x,y)\boldsymbol{i} + Q(x,y)\boldsymbol{j}$, then:

$$\begin{split} \oint_C P dx + Q dy &= \int_0^{2\pi} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \boldsymbol{r}'(t) dt \\ &= 4 \int_0^{2\pi} \left(\cos(t) - \sin(t), \cos(t) + \sin(t) \right) \cdot \left(-\sin(t), \cos(t) \right) dt \\ &= 4 \int_0^{2\pi} \left(-\sin(t) \cos(t) + \sin(t)^2 + \cos(t)^2 + \sin(t) \cos(t) \right) dt \\ &= 4 \int_0^{2\pi} dt = 4 \cdot 2\pi = 8\pi. \end{split}$$

By comparing the two approaches you can see that Green's theorem lets us compute this integral much more simply and with a lower likelihood of making mistakes.