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Chapter 1

Review topics

In this chapter, I’ll collect some topics which you should know for this course. I will add to
this list as we progress through the course. For each topic, I will try to collect some links you
can use to review. If you have a particularly good reference, please send it to me. Books,
websites, videos, whatever—all are fine.

1.1 Single variable and multivariable calculus
• Derivatives (including how to take derivatives of common functions)

• Integrals

• Partial derivatives

• The gradient

• The Jacobian

• The Hessian

• The dot product

• Limits

• Sequences

• Taylor expansions in a single variable

• Taylor expansions in multiple variables

• “Big-O” notation

• Big-O remainder for a Taylor expansion

• Integral form of the remainder for a Taylor expansion
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1.2 Linear algebra
• Matrix notation

• The matrix transpose

• The matrix inverse

• How to convert a linear system written as a set of equations to “matrix form”

• How to write a dot product in matrix notation

• How to compute a matrix vector product

1.3 Python programming
• The basics: syntax, how to call Python from the command-line, how to edit and debug

your code, etc.

• How to install packages and use them in a Python script
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Chapter 2

9/1/22

2.1 Course introduction
In this chapter, we want to briefly outline some of the basic ideas that you’ll encounter
in this course. The course title is “Linear and Nonlinear Optimization”—so, what opti-
mization? One answer is that it’s a combination of modeling, math, algorithms, numerical
implementation, applications... the list goes on. If you haven’t encountered it before, the
most important of these to understand initially is modeling.

Well, what is modeling? It’s an important part of the scientific enterprise, in which
phenomena in the real world are reduced to mathematical objects, which are then validated
against experiments or used to make predictions in the real world (possibly for business,
engineering, government planning... again, the list goes on).

Modeling involves the interplay of the following pieces:

• The application or problem: the source of the phenomenon which is to be “cap-
tured” by the model.

• The model: the mathematical object to which that phenomenon has been reduced.

• Analysis: mathematical analysis of the model. What are its properties? How does it
work? What are the solutions like? Are the simple instances of this model for which
solutions can be derived, either directly or asymptotically?

• Numerical methods: algorithms for computing solutions to the model. Often, the
model will be complicated, and it will not be possible to extract an analytical or
asymptotic solution.

Example 2.1.1. Let’s say we want to find the steady state temperature in a room, provided
that we know (or can guess) the temperature or the thermal properties of each surface in
the room. This is an application or problem that we could attempt to model. One such
model is Laplace’s equation, which is a partial differential equation. If we analyze the model,
we can learn some things about how a characteristic solution might behave—for example,
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solutions of Laplace’s equation obey a maximum principle, which tells us something about
the possible steady state temperature distributions. Furthermore, a course on PDEs might
tell us how to compute the solution of Laplace’s equation for some simple geometries and
boundary conditions, such as for an idealized 1D model of a rod—but for a building, we will
need to use a numerical method such as the finite element method (FEM).

This is a simple example from mechanical engineering with some practical use. In opti-
mization, we will follow the same process, but our goal will be to construct and solve models
which describe a problem in which the goal is to minimize or maximize something. This is
extremely open-ended—in fact, Example 2.1.1 can be posed as an optimization problem if
we consider the variational form of Laplace’s equation!
Example 2.1.2. Say we’re interested in driving from Chicago to Los Angeles as quickly
as possible. A simple model for this would be to make a graph consisting of the interstates
connecting Chicago and Los Angeles, with edges being weighted by the speed limit of each
interstate. In this graph, a path connecting Chicago to Los Angeles is a sequence of edges in
the graph starting at Chicago and leading to Los Angeles. The cost of the path is the sum
of the weights on the edges. We could then attempt to find the shortest path (the minimum
cost path) from Chicago to Los Angeles. If we think about this for a bit (i.e., analyze), we’ll
realize the edge weights being nonnegative means that it is even possible to find a shortest
path. Later in these notes, we might see that Dijkstra’s algorithm is an efficient algorithm
for finding a shortest path.

This is an example of a particular kind of optimization problem called a combinatorial or
discrete optimization problem. We will learn bits and pieces about combinatorial optimization
problems in passing in this case, but they will not be our main focus. Instead, we will focus
on continuous optimization problems.
Example 2.1.3. Imagine we have a convex polygon P in R2, where a convex set is a set
where, if we consider any pair of points inside, the closed interval connecting them is fully
contained in the set. Now: what is the largest area ellipsoidal ball E which fits inside this
polygon?

How could we model this problem? Something like:
maximize Area(E)

subject to E ⊆ P.
(2.1)

This is an example of a continuous optimization problem. The variable we’re optimizing over,
E, is a continuous variable, since E can be parametrized by a vector—perhaps, without loss
of generality, we might just write:

E =

{
(x, y) ∈ R2 :

x2

a2
+

y2

b2
≤ 1

}
. (2.2)

Hence, there should be a formula for Area in terms of the pair (a, b). However, it will turn
out that solving this problem requires some techniques which we won’t come to until later in
the course. (If you’re interested, this ellipse goes by the name of the Löwner-John ellipse.)
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In general, we can see that a continuous optimization problem will take the form:

minimize F (X)

subject to X ∈ X ,
(2.3)

where F is the cost function, and X is the domain of the optimization problem (or constraint
set). Note that since:

min
X∈X

F (X) = −max
X∈X

−F (X), (2.4)

so we will usually just talk about minimization problems when we want to discuss optimiza-
tion problems in the abstract.

Note that Equation (2.3) is very abstract, and there are many ways of making it con-
crete. We have seen two examples a optimization problems which are encapsulated by Equa-
tion (2.3) in Examples 2.1.2 and 2.1.3. We will focus on three major families of optimization
problems in this course:

1. Linear programs

2. Unconstrained nonlinear programs

3. Constrained nonlinear programs

Usually, the latter two are just referred to as “unconstrained optimization problems” and
“constrained optimization problems”, respectively. The difference between these three fam-
ilies resides in how we specify the cost function F and the domain X.

Note that the fact that these are all classes of continuous optimization problems means
that we will assume that X ⊆ Rn—that is, we optimize a scalar field F : X → R over a
subset of the finite-dimensional real vector space Rn (we may further qualify this by saying
that we consider only finite-dimensional optimization problems, since it is also possible to
consider infinite-dimensional ones).

Another consideration is whether these optimization problems are in fact “computable”.
The assumption that X is a subset of Rn is not that restrictive! That are some horrendous
subsets of Rn which would be impossible to efficiently describe on a computer (for instance,
consider optimizing a function over a fractal—maybe interesting to try!). To that end, we
assume that X can be described by some finite list of equality and inequality constraints:

X = {x ∈ Rn : gi(x) = 0 for i ∈ I and hi(x) ≤ 0 for j ∈ J} , (2.5)

where I, J ⊆ Z are index sets such that |I| < ∞ and |J | < ∞.
Along the way, we will also encounter some examples of combinatorial optimization prob-

lems, as we mentioned, as well as dynamic programming. An important theme throughout
all of this will be convexity—not only of sets, but also of functions.
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2.2 What is linear programming?
A linear program (or LP) is an instance of Equation (2.3) where F : X → R is a linear
function and each of the constraint functions gi and hj are linear, as well. Recall that a
linear function f mapping from Rn to R is very simple. Let a ∈ Rn and b ∈ R. Then we can
write it as:

f(x) = a⊤x+ b =
n∑

i=1

aixi + b, (2.6)

where “⊤” denotes the matrix transpose. Hence, a linear program will have the general form:

minimize a⊤x

subject to c⊤i x+ di = 0, i ∈ I,

e⊤j x+ fj ≤ 0, j ∈ J.

(2.7)

Note that we have left off the “b” in the cost function, since it does not affect the location
of the minimizer!

Let’s consider a few simple examples of LPs where n = 1 (i.e., x inR—just a scalar
optimization variable). In this case, the cost function takes a simple and familiar form:
y = F (x) = mx+ b. Here, m is the slope and b is the intercept of a line. There are two cases
to check: m ̸= 0 and m = 0:

x

y

y = mx+ b

no minimum!

x

y

y = mx+ b = b

all x minimize y(x)!

If m ̸= 0, it is clear that y = mx+ b is unbounded below, and there is no minimizer for finite
x. On the other hand, if m = 0, then since y(x) = b is just the constant function, every
point x minimizes y(x).
Problem 2.2.1. Explain why this is actually the same behavior we should expect for an
unconstrained LP in any number of dimensions (i.e., where X = Rn, n ≥ 1).

Now let’s consider a constrained LP in 1D. Again, there are two basic important cases
to check:
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x

y

X

f(X)

x∗

x

y

X

f(X)

no minimizer!

Here, we write the optimum (the point which attains the minimum or maximum of an
optimization problem) of the minimization problem as:

x∗ = argmin
x∈X

F (x). (2.8)

This is standard notation for the “argmin” or minimizing argument of a minimization prob-
lem. At this point, based on Problem 2.2.1, we should ask what behavior to expect in higher
dimensions. In general, the geometry of high-dimensional spaces is quite complicated and
unintuitive. We are not yet in a good position to predict what will happen if n > 1.

Note: More to come!
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