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The problem of solving a linear system Ax = b is central to scientific computation. 
In this chapter we focus on the method of Gaussian elimination, the algorithm of 
choice if A is square, dense, and unstructured. Other methods are applicable if A 
does not fall into this category, see Chapter 4, Chapter 1 1 ,  §12 . 1 ,  and §12 .2 .  Solution 
procedures for triangular systems are discussed first . These are followed by a derivation 
of Gaussian elimination that makes use of Gauss transformations. The process of 
eliminating unknowns from equations is described in terms of the factorization A = LU 
where L is lower triangular and U is upper triangular. Unfortunately, the derived 
method behaves poorly on a nontrivial class of problems. An error analysis pinpoints 
the difficulty and sets the stage for a discussion of pivoting, a permutation strategy 
that keeps the numbers "nice" during the elimination. Practical issues associated with 
scaling, iterative improvement , and condition estimation are covered. A framework for 
computing the LU factorization in parallel is developed in the final section. 

Reading Notes 
Familiarity with Chapter 1 ,  §§2 . 1-2 .5 ,  and §2.7 is assumed. The sections within 

this chapter depend upon each other as follows: 

§3 .5 t 
§3. 1 --+ §3.2 --+ §3.3 --+ §3.4 .!. 

§3.6 
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Useful global references include Forsythe and Moler (SLAS) ,  Stewart( MABD) , Higham 
(ASNA) , Watkins (FMC) , Trefethen and Bau (NLA) ,  Demmel (ANLA) ,  and Ipsen 
(NMA) . 3 . 1  Triangular Systems 

Traditional factorization methods for linear systems involve the conversion of the given 
square system to a triangular system that has the same solution. This section is about 
the solution of triangular systems. 

3 . 1 . 1  Forward Substitution 

Consider the following 2-by-2 lower triangular system: 

[ ��� l�2 ] [ :� ] = [ � ] . 
If £1 1£22 -=/: 0, then the unknowns can be determined sequentially: 

X1 = bi /£1 1 , 

X2 = (b2 - £21X1 ) /£22 ° 

This is the 2-by-2 version of an algorithm known as forward substitution. The general 
procedure is obtained by solving the ith equation in Lx = b for xi : 

If this is evaluated for i = l :n , then a complete specification of x is obtained. Note 
that at the ith stage the dot product of L(i , l :i - 1) and x ( l :i - 1 )  is required. Since 
bi is involved only in the formula for Xi , the former may be overwritten by the latter. 

Algorithm 3 . 1 . 1  (Row-Oriented Forward Substitution) If L E  Rnxn is lower trian
gular and b E Rn , then this algorithm overwrites b with the solution to Lx = b. L is 
assumed to be nonsingular. 

b( l )  = b( l ) /  L ( l ,  1 )  

for i = 2:n 

b(i) = (b(i) - L(i , l : i  - l ) · b( l :i - 1 ) ) /L(i , i) 
end 

This algorithm requires n2 flops. Note that L is accessed by row. The computed 
solution x can be shown to satisfy 

(L + F)x = b IF I :::;; nu lL I + O(u2 ) .  (3 . 1 . 1 ) 

For a proof, see Higham (ASNA, pp. 141- 142) . It says that the computed solution 
exactly satisfies a slightly perturbed system. Moreover, each entry in the perturbing 
matrix F is small relative to the corresponding element of L. 
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3.1 .2 Back Substitution 

The analogous algorithm for an upper triangular system U x = b is called back substi
tution. The recipe for Xi is prescribed by 

and once again bi can be overwritten by Xi . 

Algorithm 3.1 .2  (Row-Oriented Back Substitution) If U E Rnxn is upper triangular 
and b E Rn, then the following algorithm overwrites b with the solution to U x = b. U is assumed to be nonsingular. 

b(n) = b(n)/U(n, n) 

for i = n - 1 :  - 1 : 1  

b(i) = (b(i ) - U(i , i + l :n) · b(i + l :n) )/U(i ,  i) 
end 

This algorithm requires n2 flops and accesses U by row. The computed solution x 
obtained by the algorithm can be shown to satisfy 

(U + F)x = b, IF I � nu lU I + O(u2) .  (3 . 1 .2) 

3.1 .3 Column-Oriented Versions 

Column-oriented versions of the above procedures can be obtained by reversing loop 
orders. To understand what this means from the algebraic point of view, consider 
forward substitution. Once x1 is resolved, it can be removed from equations 2 through n leaving us with the reduced system 

L(2:n, 2:n)x(2:n) = b(2:n) - x(l ) · L(2:n, 1 ) .  

We next compute x2 and remove it from equations 3 through n ,  etc. Thus, i f  this 
approach is applied to 

we find x1 = 3 and then deal with the 2-by-2 system 

Here is the complete procedure with overwriting. 

Algorithm 3.1 .3  (Column-Oriented Forward Substitution) If the matrix L E  Rnxn 
is lower triangular and b E Rn, then this algorithm overwrites b with the solution to 
Lx = b. L is assumed to be nonsingular. 
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for j = l :n - 1 
b(j )  = b(j)/L(j, j )  
b(j + l :n) = b(j + l :n) - b(j ) · L(j + l :n, j )  

end 
b(n) = b(n)/L(n, n) 

It is also possible to obtain a column-oriented saxpy procedure for back substitution. 

Algorithm 3.1 .4 (Column-Oriented Back Substitution) If U E 1Rnxn is upper trian
gular and b E 1Rn, then this algorithm overwrites b with the solution to U x = b. U is 
assumed to be nonsingular. 

for j = n: - 1 : 2  

b(j )  = b(j )/U(j, j )  
b( l :j - 1 )  = b( l :j - 1 )  - b(j) · U( l :j - 1 , j )  

end 
b(l )  = b( l )/U(l ,  1 )  

Note that the dominant operation in  both Algorithms 3 . 1 .3 and 3. 1 .4 i s  the saxpy 
operation. The roundoff behavior of these implementations is essentially the same as 
for the dot product versions. 

3 .1 .4  Multiple Right-Hand Sides 

Consider the problem of computing a solution X E 1Rnx q to LX = B where L E  1Rnxn 
is lower triangular and B E 1Rnx q . This is the multiple-right-hand-side problem and 
it amounts to solving q separate triangular systems, i .e . , LX( : , j )  = B( : , j ) ,  j = l :q. 
Interestingly, the computation can be blocked in such a way that the resulting algorithm 
is rich in matrix multiplication, assuming that q and n are large enough. This turns 
out to be important in subsequent sections where various block factorization schemes 
are discussed. 

It is sufficient to consider just the lower triangular case as the derivation of block 
back substitution is entirely analogous. We start by partitioning the equation LX = B 
as follows: 

0 
0 f�� L�2 

LNl  LN2 LNN  

(3. 1 .3) 

Assume that the diagonal blocks are square. Paralleling the development of Algorithm 
3 . 1 .3 , we solve the system L1 1X1 = B1 for X1 and then remove X1 from block equations 
2 through N: 

Continuing in  this way we obtain the following block forward elimination scheme: 
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for j = l :N 

end 

Solve L11X1 = Bi 
for i = j + l :N 

Bi = Bi - LiiXi 
end 

Notice that the i-loop oversees a single block saxpy update of the form [ Bi
;
+ i [ B1

:
+ 1 l [ L1� 1 ,1 l 

Xi . 
BN BN LN,j 
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(3. 1 .4) 

To realize level-3 performance, the submatrices in (3. 1 . 3) must be sufficiently large in 
dimension. 

3.1 .5 The Level-3 Fraction 

It is handy to adopt a measure that quantifies the amount of matrix multiplication in 
a given algorithm. To this end we define the level-3 fraction of an algorithm to be the 
fraction of flops that occur in the context of matrix multiplication. We call such flops 
level-3 flops. 

Let us determine the level-3 fraction for (3 . 1 .4) with the simplifying assumption 
that n = rN. (The same conclusions hold with the unequal blocking described above. ) 
Because there are N applications of r-by-r forward elimination (the level-2 portion of 
the computation) and n2 flops overall , the level-3 fraction is approximately given by 

Nr2 1 1 - � = l - N . 

Thus, for large N almost all flops are level-3 flops. It makes sense to choose N as 
large as possible subject to the constraint that the underlying architecture can achieve 
a high level of performance when processing block saxpys that have width r = n/N or 
greater. 

3.1 .6  Nonsquare Triangular System Solving 

The problem of solving nonsquare, m-by-n triangular systems deserves some attention. 
Consider the lower triangular case when m ;::::: n, i .e . ,  [ Lu ] x L21 

Ln E JRnxn, 
L E R(m-n) xn 21 ' 

Assume that L1 1  is lower triangular and nonsingular. If we apply forward elimination 
to Lux =  bi , then x solves the system provided L21 (L!"lb1 ) = b2 . Otherwise, there 
is no solution to the overall system. In such a case least squares minimization may be 
appropriate. See Chapter 5. 

Now consider the lower triangular system Lx = b when the number of columns 
n exceeds the number of rows m. We can apply forward substitution to the square 
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system L(l :m, l :m)x(l :m, l :m) = b and prescribe an arbitrary value for x(m + l :n) .  
See §5.6 for  additional comments on systems that have more unknowns than equations. 
The handling of nonsquare upper triangular systems is similar. Details are left to the 
reader. 

3. 1 .  7 The Algebra of Triangular Matrices 

A unit triangular matrix is a triangular matrix with l 's on the diagonal. Many of the 
triangular matrix computations that follow have this added bit of structure. It clearly 
poses no difficulty in the above procedures. 

For future reference we list a few properties about products and inverses of tri-
angular and unit triangular matrices. • The inverse of an upper (lower) triangular matrix is upper (lower) triangular. • The product of two upper (lower) triangular matrices is upper (lower) triangular. • The inverse of a unit upper (lower) triangular matrix is unit upper (lower) trian

gular. • The product of two unit upper (lower) triangular matrices is unit upper (lower) 
triangular. 

Problems 

P3.l .1  Give an algorithm for computing a nonzero z E Rn such that Uz = 0 where U E Rnxn is 
upper triangular with Unn = 0 and uu · · · Un- 1 ,n- l ¥: 0. 
P3.1.2 Suppose L = In - N is unit lower triangular where N E Rnxn. Show that 

L- 1 = In + N  + N2 + · · · + Nn- 1 . 
What is the value of I I L- 1 l l F if Nii = 1 for all i > j? 
P3.l.3 Write a detailed version of (3. 1 .4) .  Do not assume that N divides n. 
P3.l.4 Prove all the facts about triangular matrices that are listed in §3. 1 .7. 
P3.l.5 Suppose S, T E  Rnxn are upper triangular and that (ST - ),,I)x = b is a nonsingular system. 
Give an O(n2 ) algorithm for computing x. Note that the explicit formation of ST - ),,I requires O(n3) 
flops. Hint: Suppose 

S+ = [ � T + = [ � � ] , b+ = [ � ] , 
where S+ = S(k - l :n, k - l :n) , T+ = T(k - l :n, k - l :n) ,  b+ = b(k - l :n) ,  and u, T, f3 E R. Show that 
if we have a vector Xe such that 

and We = Texe is available, then 

/3 - uvT Xe - UT We 
"( = UT - ),, 

solves (S+T+ - ),,I)x+ = b+ · Observe that x+ and w+ = T+x+ each require O(n - k) flops. 

P3.l.6 Suppose the matrices Ri , . . .  , Rp E Rnxn are all upper triangular. Give an O(pn2 ) algorithm 
for solving the system (R1 · · · Rp - ),,I)x = b assuming that the matrix of coefficients is nonsingular. 
Hint. Generalize the solution to the previous problem. 

P3. l.7 Suppose L, K E R"'xn are lower triangular and B E  Rnxn. Give an algorithm for computing 
X E  Rnxn so that LXK = B. 
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Notes and References for §3.1 

The accuracy of a computed solution to a triangular system is often surprisingly good, see: N.J. Higham (1989) . "The Accuracy of Solutions to Triangular Systems,'' SIAM J. Numer. Anal. 26, 
1252-1265. 

Solving systems of the form (Tp · · · Ti - >.I)x = b where each Ti is triangular is considered in: C.D. Martin and C.F. Van Loan (2002) . "Product Triangular Systems with Shift," SIAM J. Matrix 
Anal. Applic. 24, 292-301 .  

The trick t o  obtaining an O(pn2 ) procedure that does not involve any matrix-matrix multiplications is to look carefully at the back-substitution recursions. See P3. 1 .6. A survey of parallel triangular system solving techniques and their stabilty is given in: N.J. Higham (1995) . "Stability of Parallel Triangular System Solvers,'' SIAM J. Sci. Comput. 1 6, 
400-413. 3.2 The LU Factorization 

Triangular system solving is an easy O(n2 ) computation. The idea behind Gaussian 
elimination is to convert a given system Ax = b to an equivalent triangular system. 
The conversion is achieved by taking appropriate linear combinations of the equations. 
For example, in the system 

3x1 + 5x2 = 9, 
6x1 + 7x2 = 4, 

if we multiply the first equation by 2 and subtract it from the second we obtain 

3x1 + 5x2 = 9, 
-3x2 = -14 .  

This is  n = 2 Gaussian elimination. Our objective in this section is  to describe the 
procedure in the language of matrix factorizations. This means showing that the algorithm computes a unit lower triangular matrix L and an upper triangular matrix U so 
that A = LU, e.g. , [ � � ] = [ ; � ] [ � -� ] . 
The solution to the original Ax = b problem is then found by a two-step triangular 
solve process: 

Ly = b, Ux = y Ax = LU x = Ly = b. (3 .2 . 1 )  

The LU factorization i s  a "high-level" algebraic description of Gaussian elimination. Linear equation solving is not about the matrix vector product A-1 b but about com
puting LU and using it effectively; see §3.4.9. Expressing the outcome of a matrix 
algorithm in the "language" of matrix factorizations is a productive exercise, one that 
is repeated many times throughout this book. It facilitates generalization and high
lights connections between algorithms that can appear very different at the scalar level. 
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3.2 . 1 Gauss Transformations 

To obtain a factorization description of Gaussian elimination as it is traditionally pre
sented, we need a matrix description of the zeroing process. At the n = 2 level, if 
vi # 0 and T = 112/v1 , then 

[ -� � ] [ �� ] [ � ] . 
More generally, suppose v E nr· with Vk # o. If 

TT = [ 0, . . . , 0 , Tk+b · · · , Tn ] , Vi i = k +  l :n, Ti , � Vk k 
and we define 

Mk = In - rer , (3 .2 .2) 
then 1 0 0 0 Vt VJ 

Nhv 0 1 0 0 Vk Vk 
0 0 = 0 -Tk+l 1 Vk+l 

0 -Tn 0 1 Vn 0 

A matrix of the form Mk = In - ref E Rnxn is a Gauss transformation if the first k 
components of T E Rn are zero. Such a matrix is unit lower triangular. The components 
of r(k + l :n) are called multipliers. The vector r is called the Gauss vector. 

3.2 .2  Applying Gauss Transformations 

Multiplication by a Gauss transformation is particularly simple. If C E  Rnxr and 
Mk = In - ref is a Gauss transformation, then 

is an outer product update. Since r(l :k) = 0 only C(k + l :n , : ) is affected and the 
update C = lvhC can be computed row by row as follows: 

for i = k + l :n 
C(i , : )  = C(i , : )  - Ti · C(k, : )  

end 

This computation requires 2(n - k)r flops. Here is an example: 

C = [ � ! � ] , r = [ � i 
3 6 10 - 1 (I - re[)C = [ 411 i � l · 10 17  
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3.2.3 Roundoff Properties of Gauss Transformations 

If f is the computed version of an exact Gauss vector r, then it is easy to verify that f = r + e, l e i ::; ujr j .  

If f is used in  a Gauss transform update and H( (In - fe'f}C) denotes the computed 
result, then 

fl ((In - fe'f)C) = (l - rek }C + E , 
where 

I E I � 3u ( IC I + lr l lC(k, : ) I ) +  O(u2 ) . 
Clearly, if r has large components, then the errors in the update may be large in 
comparison to IC I · For this reason, care must be exercised when Gauss transformations 
are employed, a matter that is pursued in §3.4. 

3.2.4 Upper Triangularizing 

Assume that A E R."'xn. Gauss transformations M1 , . . .  , Mn-1 can usually be found 
such that Mn- 1 · · · M21\11A = U is upper triangular. To see this we first look at the n = 3 case. Suppose 

and note that 

M1 = [ -� � � l -3 0 1 
Likewise, in the second step we have [ 1 0 0 l M2 = 0 1 0 

0 -2 1 

=> 
=> 

4 7 l 5 8 
6 10 

-! -� l -6 -1 1  

M2(M1A) = 0 -3 -6 . [ 1 4 7 l 0 0 1 
Extrapolating from this example to the general n case we conclude two things. 

• At the start of the kth step we have a matrix A(k- l } = Mk-l · · · M1A that is 
upper triangular in columns 1 through k - 1 .  

• The multipliers i n  the kth Gauss transform Mk are based on  A(k- l } (k + l :n, k) 
and ai�- l } must be nonzero in order to proceed. 

Noting that complete upper triangularization is achieved after n - 1 steps, we obtain 
the following rough draft of the overall process : 

A<1 >  = A  
for k =  l :n - 1 

end 

For i = k + l :n, determine the multipliers ri(
k} = a�Z> /ak� . 

Apply Mk = I - r<k>ef to obtain A(k+i ) = MkA(k} . 

(3.2 .3) 
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For this process to be well-defined, the matrix entries ag> , a�� , . . . , a��--;_��- l  must be 
nonzero. These quantities are called pivots. 

3.2 .5  Existence 

If no zero pivots are encountered in (3.2 .3) , then Gauss transformations Mi ,  . . .  , Mn- l 
are generated such that Mn-1 · · · M1A = U is upper triangular. It is easy to check 
that if Mk = In - r<k> eI , then its inverse is prescribed by M;;1 = In + r <k> eI and so 

A = LU (3.2 .4) 
where 

(3.2 .5) 
It is clear that L is a unit lower triangular matrix because each M;;1 is unit lower 
triangular. The factorization (3 .2.4) is called the L U factorization. 

The LU factorization may not exist . For example, it is impossible to find lij and 
Uij so [ 1 2 3 l [ 1 0 0 l [ U1 1  U12 U13 l 

2 4 7 = f2 1  1 Q Q U22 U23 . 
3 5 3 f31 f32 1 Q Q U33 

To see this, equate entries and observe that we must have u1 1  = 1 ,  u12 = 2, £21 = 2, 
u22 = 0, and £31 = 3. But then the (3,2) entry gives us the contradictory equation 
5 = f3 1 U12 + f32U22 = 6. For this example, the pivot a��) = a22 - ( a2i /  au )a1 2  is zero. 

It turns out that the kth pivot in (3.2 .3) is zero if A ( l :k, l : k) is singular. A 
submatrix of the form A ( l :k ,  l : k) is called a leading principal submatrix. 

Theorem 3.2. 1 .  (LU Factorization) . If A E Rnxn and det(A ( l : k , l : k) )  # 0 for 
k = l :n - 1 , then there exists a unit lower triangular L E  Rnxn and an upper triangular 
U E Rnxn such that A = LU. If this is the case and A is nonsingular, then the 
factorization is unique and det(A) = uu · · · Unn · 

Proof. Suppose k - 1 steps in (3.2 .3) have been executed. At the beginning of step k 
the matrix A has been overwritten by Mk- l · · · M1 A = A(k- l ) . Since Gauss transfor
mations are unit lower triangular, it follows by looking at the leading k-by-k portion 
of this equation that 

( ( )) (k- 1 ) (k- 1 ) det A l :k, l : k  = a1 1  • • • akk . 

Thus, if A ( l :k, l :k) is nonsingular, then the kth pivot ai�- l ) is nonzero. 

(3.2.6) 
As for uniqueness, if A = LiUi and A = L2U2 are two LU factorizations of a 

nonsingular A, then L"2i Li = U2U1 1 . Since L2 1 Li is unit lower triangular and U2U11 
is upper triangular, it follows that both of these matrices must equal the identity. 
Hence, Li = L2 and U1 = U2 . Finally, if A = LU, then 

det(A) = det(LU) = det(L)det(U) = det(U) . 

It follows that det(A) = uu · · · Unn · D 



3.2. The LU Factorization 

3.2.6 L Is  the Matrix of Multipliers 

1 15 
It turns out that the construction of L is not nearly so complicated as Equation (3 .2 .5) 
suggests. Indeed, 

L M-1 M- 1 = 1 · · · n- 1 
= (In - T( l ) er) - l  · · · (In - T(n- l ) e�- l ) - l  

= (In + T( l ) er) · · · (In + T(n- l ) e�_1 ) 
n- 1 

= In + L: r(k> er 
k=l 

showing that 

L (k + l :n, k) = r(k) (k + l :n) k = l :n - 1 . (3 .2 .7) In other words, the kth column of L is defined by the multipliers that arise in the k-th 
step of (3.2.3) . Consider the example in §3.2 .4 : 

3.2. 7 The Outer Product Point of View 

Since the application of a Gauss transformation to a matrix involves an outer product , we can regard (3.2 .3) as a sequence of outer product updates. Indeed, if 

A =  [ a WT ] 1 
v B n-1 

n-1 

then the first step in Gaussian elimination results in the decomposition [ Q WT l [ 1 0 l [ 1 0 l [ Q WT l 
z B 

= z/a In- 1 0 B - zwT /a 0 In- 1 . 

Steps 2 through n - 1 compute the LU factorization 

for then 
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3.2 .8  Practical Implementation 

Let us consider the efficient implementation of (3 .2 .3) . First , because zeros have already 
been introduced in columns 1 through k - 1 ,  the Gauss transformation update need 
only be applied to columns k through n. Of course, we need not even apply the kth 
Gauss transform to A( : ,  k) since we know the result. So the efficient thing to do is 
simply to update A(k + l :n , k + l :n) . Also, the observation (3 .2 .7) suggests that we 
can overwrite A(k + l :n, k) with L(k + l :n, k) since the latter houses the multipliers 
that are used to zero the former. Overall we obtain: 

Algorithm 3.2 .1  (Outer Product LU) Suppose A E 1Rnxn has the property that 
A(l :k, l :k) is nonsingular for k = l :n - 1 .  This algorithm computes the factorization 
A =  LU where L is unit lower triangular and U is upper triangular. For i = l :n - 1 , 
A(i , i :n) is overwritten by U(i, i :n) while A(i + l :n, i) is overwritten by L(i + l :n, i) .  

for k =  l :n - 1  

p = k + l :n 
A(p, k) = A(p, k)/A(k, k) 
A(p, p) = A(p, p) - A(p, k) ·A(k, p) 

end 

This algorithm involves 2n3 /3 flops and it is one of several formulations of Gaussian 
elimination. Note that the k-th step involves an (n - k)-by-(n - k) outer product . 

3.2 .9  Other Versions 

Similar to matrix-matrix multiplication, Gaussian elimination is a triple-loop procedure 
that can be arranged in several ways. Algorithm 3.2 . 1  corresponds to the "kij'' version 
of Gaussian elimination if we compute the outer product update row by row: 

for k =  l :n - 1 

end 

A(k + l :n, k) = A(k + l :n, k)/A(k, k) 
for i = k + l :n  

end 

for j = k +  l :n 
A(i , j )  = A(i , j ) - A(i, k) ·A(k, j) 

end 

There are five other versions: kji, ikj ,  ijk, jik, and jki. The last of these results in 
an implementation that features a sequence of gaxpys and forward eliminations which 
we now derive at the vector level. 

The plan is to compute the jth columns of L and U in step j .  If j = 1 ,  then by 
comparing the first columns in A = LU we conclude that 

L(2:n, j )  = A(2:n, 1 ) /A(l ,  1 ) 

and U(l ,  1 ) = A( l ,  1 ) .  Now assume that L ( : ,  l :j - 1 ) and U ( l :j - 1 ,  l :j - 1 )  are known. 
To get the jth columns of L and U we equate the jth columns in the equation A = LU 
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and infer from the vector equation A( : , j )  = LU(: , j ) that 

A(l :j - l , j ) = L(l :j - 1 , l :j - l ) · U( l :j - l , j ) 

and j 
A(j :n, j) = L, L(j:n, k) · U(k, j ) . 

k= l  

The first equation i s  a lower triangular linear system that can be solved for the vector 
U(l :j - 1 ,  j ) .  Once this is accomplished, the second equation can be rearranged to 
produce recipes for U(j, j )  and L(j + l :n, j ) . Indeed, if we set j - 1 

v(j :n) = A(j :n, j ) - L, L(j :n, k)U(k, j) 
k= l 

= A(j :n, j ) - L(j :n, l :j - l) · U ( l :j - 1 , j) ,  

then L(j + l :n, j )  = v(j + l :n)/v(j )  and U(j, j )  = v(j ) . Thus, L(j + l :n, j ) is a scaled 
gaxpy and we obtain the following alternative to Algorithm 3.2 . 1 :  
Algorithm 3.2 .2  (Gaxpy L U )  Suppose A E m_nxn has the property that A(l :k, l :k) is 
nonsingular for k =  l :n - 1 .  This algorithm computes the factorization A =  LU where 
L is unit lower triangular and U is upper triangular. 

Initialize L to the identity and U to the zero matrix. 
for j = l :n 

end 

if j = 1 

else 
v = A( : , l )  

ii =  A( : , j ) 
Solve L(l :j - 1 , l :j - l ) · z = ii ( l :j - 1 ) for z E ]Ri-1 . 
U(l :j - 1 , j ) = z 
v(j :n) = ii(j :n) - L(j :n, l :j - l ) · z 

end 
U(j, j )  = v(j )  
L(j + l :n, j ) = v(j + l :n)/v(j )  

(We chose to  have separate arrays for L and U for clarity; i t  i s  not necessary in  practice. ) 
Algorithm 3.2 .2 requires 2n3 /3 flops, the same volume of floating point work required 
by Algorithm 3.2 . 1 .  However, from § 1 .5 .2 there is less memory traffic associated with a 
gaxpy than with an outer product, so the two implementations could perform differently in practice. Note that in Algorithm 3.2 .2 , the original A( : , j ) is untouched until step j . 

The terms right-looking and left-looking are sometimes applied to Algorithms 
3.2 .1 and 3.2 .2 .  In the outer-product implementation, after L(k:n, k) is determined, 
the columns to the right of A( : ,  k) are updated so it is a right-looking procedure. In 
contrast, subcolumns to the left of A( : ,  k) are accessed in gaxpy LU before L(k + l :n, k) is produced so that implementation left-looking. 
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3 .2 .10  The LU Factorization of a Rectangular Matrix 

The LU factorization of a rectangular matrix A E IRnxr can also be performed. The 
n > r case is illustrated by 

while 

[ ! ! ] � [ ! ! ] [ � -� l 
[ ! � : ] = [ ! � ] [ � -� _: ] 

depicts the n < r situation. The LU factorization of A E IRnxr is guaranteed to exist 
if A(l :k, l :k) is nonsingular for k = l :min{n, r } . 

The square LU factorization algorithms above needs only minor alterations to 
handle the rectangular case. For example, if n > r, then Algorithm 3.2 . 1  modifies to 
the following: 

for k =  l :r 

end 

p = k +  l :n 

A(p, k) = A(p, k)/A(k, k) 
if k < r (3.2.8) 

µ = k + l :r 
A(p, µ) = A(p, µ) - A(p, k) · A(k, µ) 

end 

This calculation requires nr2 - r3 /3 flops. Upon completion, A is overwritten by 
the strictly lower triangular portion of L E IRnxr and the upper triangular portion of 
U E Ilfxr . 

3.2 . 1 1  B lock LU 

I t  i s  possible to  organize Gaussian elimination so that matrix multiplication becomes 
the dominant operation. Partition A E IRnxn as follows: 

A = 

r n-r 
where r is a blocking parameter. Suppose we compute the LU factorization [ �:: l = [ �:: l Un . 

Here, Ln E m;xr is unit lower triangular and U11 E m;xr is upper triangular and 
assumed to be nonsingular. If we solve Ln U12 = Ai2 for U12 E wxn-r , then [ An Ai2 ] = [ Ln 

A21 A22 L21 
0 l [ Ir 0 l [ U1 1 U12 l 

ln-r 0 A 0 ln-r ' 
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where 
A = A22 - L21 U12 = A22 - A21Ail Ai2 

is the Schur complement of An in A. Note that if 

A =  L22U22 is the LU factorization of A, then [ Lu A =  
L2 1 
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(3 .2 .9) 

is the LU factorization of A. This lays the groundwork for a recursive implementation. 

Algorithm 3.2.3 (Recursive Block LU) Suppose A E Rnxn has an LU factorization 
and r is a positive integer. The following algorithm computes unit lower triangular 
L E Rnxn and upper triangular U E Rnxn so A =  LU. 

function [L, U] = B lockLU {A, n, r) 
if n :5 r 

else 

end 
end 

Compute the LU factorization A =  LU using (say) Algorithm 3.2 . 1 .  

Use (3.2 .8) to compute the LU  factorization A( : ,  l :r) = [ f�� ] Uu . 

Solve Lu U12 = A{l :r, r + l :n) for U12 · 
A =  A(r + l :n, r + l :n) - L21U12 

[L22 , U22) = B lockLU{A, n - r, r) 
L = [ f �� L2� ] ' U = [ Uib g�: ] 

The following table explains where the flops come from: 

Activity Flops 

Lu , L2 i . Uu 
U12 .A 

nr2 - r3/3 
(n - r)r2 

2{n - r)2 If n » r, then there are a total of about 2n3 /3 flops, the same volume of atithmetic as Algorithms 3 .2 . 1 and 3 .2 .2 .  The vast majority of these flops are the level-3 flops 
associated with the production of A. 

The actual level-3 fraction, a concept developed in §3 . 1 .5 ,  is more easily derived from a nonrecursive implementation. Assume for clarity that n = N r where N is a 
positive integer and that we want to compute 

(3 .2 . 10) 
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where all blocks are r-by-r. Analogously to Algorithm 3.2 .3 we have the following. 

Algorithm 3.2.4 (Nonrecursive Block LU) Suppose A E Rnxn has an LU factoriza
tion and r is a positive integer. The following algorithm computes unit lower triangular 
L E Rnxn and upper triangular U E Rnxn so A =  LU. 

for k =  l :N 

end 

Rectangular Gaussian elimination: [ A�k l [ L�k l 
: = : ukk 

ANk LNk 
Multiple right hand side solve: 

Lkk [ uk,k+1 I . . . I ukN ] = [ Ak,k+ i I . . .  I AkN ] 

Level-3 updates: 

Aii = Aii - LikUki • i = k + I :N, j = k + l :N 

Here is the flop situation during the kth pass through the loop: 

Activity Flops 

Gaussian elimination (N - k + l )r3 - r3 /3 

Multiple RHS solve (N - k)r3 

Level-3 updates 2 (N - k) 2r2 

Summing these quantities for k =  l :N we find that the level-3 fraction is approximately 

2n3/3 _ 1 _ � 
2n3 /3 + n2r - 2N " 

Thus, for large N almost all arithmetic takes place in the context of matrix multipli
cation. This ensures a favorable amount of data reuse as discussed in § 1 .5 .4 . 

Problems 

P3.2.1 Verify Equation (3 .2 .6} . 
P3.2.2 Suppose the entries of A(E} E E'xn  are continuously differentiable functions of the scalar E. 
Assume that A = A(O) and all its principal submatrices are nonsingular. Show that for sufficiently 
small E, the matrix A(E} has an LU factorization A(E} = L(E)U(E} and that L(E) and U(E} are both 
continuously differentiable. 
P3.2.3 Suppose we partition A E Rn x n 

A = [ An Ai2 ] 
A21 A22 

where An is r-by-r and nonsingular. Let S be the Schur complement of An in A as defined in (3.2.9) . 

Show that after r steps of Algorithm 3.2. 1 ,  A(r + l :n , r + l :n) houses S. How could S be obtained 
after r steps of Algorithm 3.2 .2? 
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p3.2.4 Suppose A E R" x " has an LU factorization. Show how Ax = b can be solved without storing 

the multipliers by computing the LU factorization of the n-by- (n + 1 ) matrix (A b] . 

p3.2.5 Describe a variant of Gaussian elimination that introduces zeros into the columns of A in the 

order, n: - 1 :2 and which produces the factorization A =  UL where U is unit upper triangular and L is lower triangular . 

p3.2.6 Matrices in Rn x n of the form N(y, k) = I - yef where y E R" are called Gauss-Jordan 

transformations. (a) Give a formula for N(y, k) - 1 assuming it exists. (b) Given x E Rn , under what 

conditions can y be found so N(y, k)x = ek ? (c) Give an algorithm using Gauss-Jordan transformations 

that overwrites A with A- 1 . What conditions on A ensure the success of your algorithm? 

P3.2.7 Extend Algorithm 3.2.2 so that it can also handle the case when A has more rows than 

columns. 

P3.2.8 Show how A can be overwritten with L and U in Algorithm 3.2 .2 . Give a 3-loop specification so that unit stride access prevails. 

P3.2.9 Develop a version of Gaussian elimination in which the innermost of the three loops oversees a dot product. 

Notes and References for §3.2 

The method of Gaussian elimination has a long and interesting history, see: 

J.F. Grear (201 1 ) . "How Ordinary Elimination Became Gaussian Elimination," Historica Mathemat-
ica, 98, 163-218. 

J .F. Grear (201 1 ) . "Mathematicians of Gaussian Elimination," Notices of the AMS 58, 782--792. 

Schur complements (3.2.9) arise in many applications. For a survey of both practical and theoretical 
interest, see: 

R.W. Cottle ( 1974) . "Manifestations of the Schur Complement ," Lin . Alg. Applic. 8, 189-2 1 1 .  

Schur complements are known as "Gauss transforms" i n  some application areas. The use of Gauss
Jordan transformations (P3.2.6) is detailed in Fox ( 1964) . See also: 

T. Dekker and W. Hoffman ( 1989) . "Rehabilitation of the Gauss-Jordan Algorithm," Numer. Math. 
54, 591-599. AB we mentioned, inner product versions of Gaussian elimination have been known and used for some 

time. The names of Crout and Doolittle are associated with these techniques, see: G.E. Forsythe ( 1960) . "Crout with Pivoting," Commun. ACM 9, 507-508. W.M. McKeeman ( 1962) . "Crout with Equilibration and Iteration," Commun. A CM. 5, 553-555. Loop orderings and block issues in LU computations are discussed in: 

J.J. Dongarra, F .G. Gustavson, and A. Karp ( 1984) . "Implementing Linear Algebra Algorithms for 
Dense Matrices on a Vector Pipeline Machine," SIA M Review 26, 91-112 . . J .M. Ortega ( 1988) . "The ijk Forms of Factorization Methods I: Vector Computers," Parallel Comput. 
7, 135-147. D.H. Bailey, K.Lee, and H.D. Simon ( 1991 ) . "Using Strassen's Algorithm to Accelerate the Solution 
of Linear Systems," J. Supercomput. 4, 357-371 .  

J.W. Demmel, N.J .  Higham, and R.S. Schreiber ( 1995) . "Stability o f  Block LU  Factorization," Numer. 
Lin. Alg. Applic. 2, 173-190. Suppase A = LU and A+AA = (L+AL)(U +AU) are LU factorizations. Bounds on the perturbations j,.L and AU in terms of AA are given in: G.W. Stewart (1997) . "On the Perturbation of LU and Cholesky Factors," IMA J. Numer. Anal. 1 7, 
1-6. X.-W. Chang and C.C. Paige ( 1998) . "On the Sensitivity of the LU factorization," BIT 98, 486-501 .  
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In certain limited domains, it is possible to solve linear systems exactly using rational arithmetic. For 
a snapshot of the challenges, see: 

P. Alfeld and D.J .  Eyre ( 1991 ) .  "The Exact Analysis of Sparse Rectangular Linear Systems," ACM 
'.lrans. Math. Softw. 1 7, 502-518. 

P. Alfeld (2000) . "Bivariate Spline Spaces and Minimal Determining Sets," J. Comput. Appl. Math. 
1 1 9, 13-27. 3 .3  Roundoff Error in Gaussian El imination 

We now assess the effect of rounding errors when the algorithms in the previous two 
sections are used to solve the linear system Ax = b. A much more detailed treatment 
of roundoff error in Gaussian elimination is given in Higham (ASNA) .  

3 .3 .1  Errors in the LU Factorization 

Let us see how the error bounds for Gaussian elimination compare with the ideal 
bounds derived in §2 .7. 1 1 .  We work with the infinity norm for convenience and focus 
our attention on Algorithm 3.2 . 1 ,  the outer product version. The error bounds that 
we derive also apply to the gaxpy formulation (Algorithm 3.2 .2) .  Our first task is to 
quantify the roundoff errors associated with the computed triangular factors. 

Theorem 3.3. 1 .  Assume that A is an n-by-n matrix of floating point numbers. If no 
zero pivots are encountered during the execution of Algorithm 3.2. 1 ,  then the computed 
triangular matrices L and 0 satisfy 

i,0 = A + H, 
JH J :::; 2 (n - l )u ( JA i + JL J JO J) + O(u2 ) .  

(3.3.1) 

(3.3.2) 

Proof. The proof is by induction on n. The theorem obviously holds for n = 1 .  
Assume that n � 2 and that the theorem holds for all (n - 1 )-by- (n - 1)  floating point 
matrices. If A is partitioned as follows 

A = WT ] 1 
B n-1 
n-1 

then the first step in Algorithm 3.2 . 1  is to compute z = fl (v/a) ,  

from which we conclude that z = v/a + f, 

l f l < uJv/a J ,  

A. 1 = fl (B - C) , 

(3.3.3) 

(3.3.4) 

(3.3.5) 

(3.3.6) 
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T A1 = B - ( zw + F1 ) + F2 , 

IF2 I  :::; u ( IB I + l z l lwT I )  + O(u2 ) ,  

IA1 I :::; IB I + l z l lwT I + O(u) . 
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(3 .3 .7) 

(3.3 .8) 

(3 .3 .9) 

The algorithm proceeds to compute the LU factorization of A1 . By induction, the 
computed factors L1 and (Ji satisfy 

where 

If 

(; = [ a: w__T l 0 U1 ' 

then it is easy to verify that 
LU = A + H 

where 

To prove the theorem we must verify (3 .3 .2) ,  i .e . , 

Considering (3 .3 . 12) ,  this is obviously the case if 

Using (3.3.9) and (3.3. 1 1 ) we have 

IH1 I :::; 2 (n - 2)u ( IB I + l z l lwT I + IL1 l lU1 I) + O(u2 ) ,  

while (3.3.6) and (3.3.8) imply 

IF1 I + IF2 I :::; u( IB I + 2 l z l lw l ) + O(u2) .  

These last two results establish (3 .3 .13) and therefore the theorem. D 

(3.3. 10) 

(3 .3 . 1 1 ) 

(3.3. 1 2) 

(3.3. 13) 

We mention that if A is m-by-n, then the theorem applies with n replaced by the 
smaller of n and m in Equation 3.3 .2 .  
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3.3 .2  Triangular Solving with Inexact Triangles 

We next examine the effect of roundoff error when L and 0 are used by the triangular 
system solvers of §3. 1 .  

Theorem 3.3.2. Let L and 0 be the computed LU factors obtained by Algorithm 3.2. 1 
when it is applied to an n-by-n floating point matrix A. If the methods of §3. 1  are used 
to produce the computed solution if to Ly = b and the computed solution x to 0 x = if, 
then (A + E)x = b with 

Proof. From (3. 1 . 1 )  and (3. 1 .2) we have 

(L + F)iJ = b, 
(0 + e)x = iJ, 

and thus 

IF I  < nu lLI + O(u2 ) ,  
1e 1 < nu lO I + O(u2 ) ,  

(L + F) (O + e)x = (LO + FO + Le +  Fe)x = b. 
If follows from Theorem 3.3 . 1 that LO = A + H with 

IH I :S 2 (n - l )u( IA I + IL l lO I ) + O(u2 ) , 
and so by defining 

E = H + F0 + Le +  Fe 
we find (A + E)x = b. Moreover, 

IE I < IH I + IF I 1 0 1 + IL i 1e 1 + O(u2 ) 
< 2nu ( IA I + IL l lO I) + 2nu ( I L l l O I) + O(u2 ) ,  

completing the proof of the theorem. D 

(3.3. 14) 

If it were not for the possibility of a large I L l l O I term, (3.3 . 14) would compare favorably 
with the ideal bound (2 .7 .21 ) .  (The factor n is of no consequence, cf. the Wilkinson 
quotation in §2 .7.7 . ) Such a possibility exists, for there is nothing in Gaussian elimi
nation to rule out the appearance of small pivots. If a small pivot is encountered, then 
we can expect large numbers to be present in L and 0. 

We stress that small pivots are not necessarily due to ill-conditioning as the 
example 

A =  [ � � l = [ l�E � l [ � _ ;jE l 
shows. Thus, Gaussian elimination can give arbitrarily poor results, even for well
conditioned problems. The method is unstable. For example, suppose 3-digit floating 
point arithmetic is used to solve [ .001 1 .00 l [ X1 ] = 

[ 1 .00 l · 1 .00 2 .00 X2 3.00 
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{See §2 .7. 1 . )  Applying Gaussian elimination we get 

L -. [ 1 

1000 � l 0 = [ and a calculation shows that 

to = [ .001 

1 

.001 

0 - 1�00 l · 
A + H. 
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If we go on to solve the problem using the triangular system solvers of §3 . 1 ,  then using 
the same precision arithmetic we obtain a computed solution x = [O , 1 jT . This is in 
contrast to the exact solution x = [ 1 .002 . . .  , .998 . .  . jT . 

Problems 

P3.3.1 Show that if we drop the assumption that A is a floating point matrix in Theorem 3.3. 1 ,  then 
Equation 3.3.2 holds with the coefficient "2" replaced by "3." 

P3.3.2 Suppose A is an n-by-n matrix and that L and 0 are produced by Algorithm 3.2 . 1 .  (a) How 
many flops are required to compute II I L i I U l l loo?  (b) Show fl ( I L l lU I ) � ( 1 + 2nu) IL l lU I + O(u2 ) . 

Notes and References for §3.3 

The original roundoff analysis of Gaussian elimination appears in: J.H. Wilkinson ( 1961 ) .  "Error Analysis of Direct Methods of Matrix Inversion," J. ACM 8, 281-330. 

Various improvements and insights regarding the bounds and have been ma.de over the years, see: 

8.A. Chartres and J .C. Geuder ( 1967) .  "Computable Error Bounds for Direct Solution of Linear 
Equations," J. A CM 14, 63-71 .  J.K. Reid ( 1971 ) .  "A  Note on  the Stability o f  Gaussian Elimination," J. Inst. Math. Applic. 8, 
374-75. 

C.C. Paige ( 1973) .  "An Error Analysis of a Method for Solving Matrix Equations,'' Math. Comput. 
27, 355-59. H.H. Robertson ( 1977) . "The Accuracy of Error Estimates for Systems of Linear Algebraic Equations,'' 
J. Inst. Math. Applic. 20, 409 -14. J.J. Du Croz and N.J .  Higham ( 1992) .  "Stability of Methods for Matrix Inversion,'' IMA J. Numer. 
Anal. 12, 1-19. J.M. Banoczi, N.C. Chiu, G.E. Cho, and l .C.F. Ipsen ( 1998) .  "The Lack of Influence of the Right-Hand 
Side on the Accuracy of Linear System Solution,'' SIAM J. Sci. Comput. 20, 203-227. P. Amodio and F. Mazzia ( 1999) .  "A New Approach to Backward Error Analysis of LU Factorization 
BIT 99, 385-402. An interesting account of von Neuman's contributions to the numerical analysis of Gaussian elimination is detailed in: J.F. Grear (20 1 1 ) .  "John von Neuman's Analysis of Gaussian Elimination and the Origins of Modern 
Numerical Analysis,'' SIAM Review 59, 607 · 682. 3.4 Pivoting The analysis in the previous section shows that we must take steps to ensure that no 

large entries appear in the computed triangular factors L and 0. The example 

A = [ .0001 
1 � ] [ 1 

10000 � ] [ .0001 
0 -9�99 ] = LU 
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correctly identifies the source of the difficulty: relatively small pivots. A way out of 
this difficulty is to interchange rows. For example, if P is the permutation 

p = [ � � ] 
then 

p A = [ .0�01 � ] = [ .0�01 � ] [ � .9�99 ] = LU. 
Observe that the triangular factors have modestly sized entries. 

In this section we show how to determine a permuted version of A that has a 
reasonably stable LU factorization. There arc several ways to do this and they each 
corresponds to a different pivoting strategy. Partial pivoting, complete pivoting, and 
rook pivoting are considered. The efficient implementation of these strategies and their 
properties are discussed. We begin with a few comments about permutation matrices 
that can be used to swap rows or columns. 

3.4. 1 I nterchange Permutations 

The stabilizations of Gaussian elimination that are developed in this section involve 
data movements such as the interchange of two matrix rows. In keeping with our 
desire to describe all computations in "matrix terms," we use permutation matrices 
to describe this process. (Now is a good time to review § 1 .2 .8-§ 1 . 2 . 1 1 . ) Interchange 
permutations are particularly important . These are permutations obtained by swapping 
two rows in the identity, e.g. , 

rr � [ n ! i ] 
Interchange permutations can be used to describe row and column swapping. If 
A E R4x4 , then II ·A is A with rows 1 and 4 interchanged while A·II is A with columns 
1 and 4 swapped. 

If P = IIm · · · II1 and each Ilk is the identity with rows k and piv (k) interchanged, 
then piv ( l :m) encodes P. Indeed, x E Rn can be overwritten by Px as follows: 

for k = l :m 
x(k)  tt x(piv (k) ) 

end 

Here, the "tt" notation means "swap contents." Since each Ilk is symmetric, we have 
pT = II1 · · · IIm . Thus, the piv representation can also be used to overwrite x with 
pTX: 

for k = m: - 1 : 1  
x(k) tt x(piv (k))  

end 

We remind the reader that although no floating point arithmetic is involved in a per
mutation operation, permutations move data and have a nontrivial effect upon perfor
mance. 
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3.4.2 Partial Pivoting 

Interchange permutations can be used in LU computations to guarantee that no mul
tiplier is greater than 1 in absolute value. Suppose [ 3 17 10 l A = 2 4 -2 . 

6 18 - 12 

To get the smallest possible multipliers in the first Gauss transformation, we need au 
to be the largest entry in the first column. Thus, if II1 is the interchange permutation 

II1 = [ �  
then [ II1A = 

It follows that [ 1 0 0 l Mi = - 1/3 1 0 =} 
-1/2 0 1 

0 
1 
0 

18 
4 

17  

� l 
- 12 l -2 . 

10 

M,IT,A � [ � 18 - 12 l -2 2 . 
8 16 

To obtain the smallest possible multiplier in M2, we need to swap rows 2 and 3. Thus, 
if 

and 

then [ � [ 1 0 
M2 = 0 1 

0 1/4 

1� -�� l · 
0 6 

For general n we have 

for k = l :n - 1  
Find an interchange permutation Ilk E Rnxn  that swaps 

A(k, k) with the largest element in I A(k:n, k) j .  
A =  IIkA 
Determine the Gauss transformation lvh = In - rCkl ef such that if 

v is the kth column of MkA, then v(k + l :n) = 0 .  
A = MkA 

end 

(3.4. 1 ) 

This particular row interchange strategy is called partial pivoting and upon completion, we have 
(3 .4.2) where U is upper triangular. As a consequence of the partial pivoting, no multiplier is 

larger than one in absolute value. 
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3.4.3 Where is L? 
It turns out that (3 .4 . 1 ) computes the factorization 

PA = LU (3.4.3) 

where P = IIn-l · · · 111 , U is upper triangular, and L is unit lower triangular with 
l li; I � 1 . We show that L(k + l :n, k) is a permuted version of Mk 's multipliers . From 
(3.4 .2 ) it can be shown that 

where Jiih = (IIn- 1 . . .  IIk+i )Mk (IIk+l . . .  IIn- 1 ) 
for k = l :n  - 1 .  For example, in the n = 4 case we have 

since the Ili are symmetric . Moreover, 

(3.4 .4) 

(3.4.5) 

with f(k) = IIn- l · · · Ilk+l  T(k) . This shows that Nh is a Gauss transformation. The 
transformation from T(k) to f(k) is easy to implement in practice. 

Algorithm 3.4.1 (Outer Product LU with Partial Pivoting) This algorithm computes 
the factorization PA = LU where P is a permutation matrix encoded by piv ( l :n - 1) , 
L is unit lower triangular with l li; I $ 1 ,  and U is upper triangular. For i = l :n, 
A(i ,  i :n) is overwritten by U(i,  i :n) and A(i + l :n, i) is overwritten by L(i + l :n,  i ) .  The 
permutation P is given by P = IIn- 1 · · · 111 where Ilk is an interchange permutation 
obtained by swapping rows k and piv (k) of In . 

for k =  l :n - 1  

end 

Determine µ with k $ µ $ n so IA (µ,  k) I = II A(k:n, k) l l oo 
piv (k) = µ 

A(k,  : )  H A(µ, : )  

i f  A(k ,  k) =f 0 

p = k + l :n  

A(p, k) = A(p, k) /A(k, k) 

A(p, p) = A(p, p) - A(p, k)A(k,  p) 
end 

The floating point overhead a..'isociated with partial pivoting is minimal from the stand
point of arithmetic as there are only O(n2 ) comparisons associated with the search for 
the pivots. The overall algorithm involves 2n3 /3 flops. 
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If Algorithm 3.4. 1 is applied to 

then upon completion 

A � u 
A = [ 1/� 1� -�� l 

1/3 - 1/4 6 
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and piv = [3 , 3] . These two quantities encode all the information associated with the 
reduction: [ 0 0 l [ 0 0 1 l [ 1 0 0 [ 6 18 - 12 l 

0 1 0 1 O A = 1/2 1 0 O 8 16 . 

1 0 1 0 0 1/3 - 1/4 1 0 0 6 

To compute the solution to Ax = b after invoking Algorithm 3.4. 1 ,  we solve 
Ly = Pb for y and Ux = y for x. Note that b can be overwritten by Pb as follows 

for k = l :n - 1  
b(k) +-t b(piv (k))  

end 

We mention that if Algorithm 3.4. 1 is applied to the problem, 

using 3-digit floating point arithmetic, then 

P = [ ol o

1 l · L = 
[ i .oo o l · .001  1 .00 

u = [ 1 .00 2 .00 l 
0 1 .00 ' 

and x = [LOO, . 996jT . Recall from §3.3 .2 that if Gaussian elimination without pivoting 
is applied to this problem, then the computed solution has 0 ( 1 ) error. 

We mention that Algorithm 3.4. 1 always runs to completion. If A(k:n, k) = 0 in 
step k, then Mk = In . 

3.4.4 The Gaxpy Version In §3.2 we developed outer product and gaxpy schemes for computing the LU factor
ization. Having just incorporated pivoting in the outer product version, it is equally 
straight forward to do the same with the gaxpy approach. Referring to Algorithm 
3.2.2, we simply search the vector l v (j :n) I in that algorithm for its maximal element 
and proceed accordingly. 
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Algorithm 3.4.2 (Gaxpy LU with Partial Pivoting) This algorithm computes the 
factorization PA = LU where P is a permutation matrix encoded by piv ( l :n - 1) , 
L is unit lower triangular with llii l $ 1 , and U is upper triangular. For i = l :n, 
A(i , i :n) is overwritten by U(i , i :n) and A(i + l :n, i) is overwritten by L(i + l :n, i ) .  The 
permutation P is given by P = IIn- 1 · · · II1 where Ilk is an interchange permutation 
obtained by swapping rows k and piv(k) of In . 

Initialize L to the identity and U to the zero matrix. 
for j = l :n 

if  j = 1 
v = A( : , 1 )  

else 

end 

ii =  IIj- 1 · · · II1A( : , j ) 
Solve L(l :j - 1 , l :j - l)z = ii( l :j - 1 ) for z E R?-1 

U(l :j - 1 , j) = z, v(j :n) = ii(j :n) - L(j :n, l :j - 1 ) · z 

Determine µ with j $ µ $ n so l v (µ) I = 1 1 v (j :n) 1 100 and set piv(j)  = µ 
v (j) ++ v(µ) ,  L(j, l :j - 1 ) ++ L(µ, l :j - 1 ) ,  U(j, j) = v(j) 

end 

if v(j) "# 0 
L(j+ l :n, j) = v(j + l :n)/v(j) 

end 

As with Algorithm 3.4 . 1 , this procedure requires 2n3 /3 flops and O(n2 ) comparisons. 

3.4.5 Error Analysis and the Growth Factor 

We now examine the stability that is obtained with partial pivoting. This requires 
an accounting of the rounding errors that are sustained during elimination and during 
the triangular system solving. Bearing in mind that there are no rounding errors 
associated with permutation, it is not hard to show using Theorem 3.3 .2 that the 
computed solution x satisfies (A + E)x = b where 

(3.4.6) 

Here we are assuming that P, l, and (J are the computed analogs of P, L, and U as 
produced by the above algorithms. Pivoting implies that the elements of l are bounded 
by one. Thus II l 1 1 00 $ n and we obtain the bound 

II E l loo $ nu ( 2 1 1  A l loo + 4n l l (J l loo) + O(u2 ) .  

The problem now is t o  bound II (J 1 100 • Define the growth factor p by 

p = max i ,j,k 

(3.4.7) 

(3.4.8) 
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where _A(k) is the computed version of the matrix A(k) = MkIIk · · · M1II1A. It follows 
that 

(3.4.9) 

Whether or not this compares favorably with the ideal bound (2 .7.20) hinges upon the 
size of the growth factor of p. (The factor n3 is not an operating factor in practice and 
may be ignored in this discussion. )  

The growth factor measures how large the A-entries become during the process 
of elimination. Whether or not we regard Gaussian elimination with partial pivoting is 
safe to use depends upon what we can say about this quantity. From an average-case 
point of view, experiments by Trefethen and Schreiber ( 1990) suggest that p is usually 
in the vicinity of n213 . However, from the worst-case point of view, p can be as large as 2n- 1 . In particular, if A E lRnxn is defined by { 1 �f � = � or j = n, 

aii = -1 1f i > J , 
0 otherwise, 

then there is no swapping of rows during Gaussian elimination with partial pivoting. 
We emerge with A =  LU and it can be shown that Unn = 2n- 1 . For example, [ - � 

-1  
-1 

0 0 
1 0 

- 1 1 
-1 - 1  � l [ -� � � � l [ � � � ; l 1 - 1  -1  1 0 0 0 1 4 

1 - 1 - 1  - 1 1 0 0 0 8 
Understanding the behavior of p requires an intuition about what makes the U

factor large. Since PA = LU implies U = L - I P A it would appear that the size of L - 1 is relevant . However, Stewart ( 1997) discusses why one can expect the £-factor to be 
well conditioned. 

Although there is still more to understand about p, the consensus is that serious 
element growth in Gaussian elimination with partial pivoting is extremely rare. The 
method can be used with confidence. 

3.4.6 Complete Pivoting 

Another pivot strategy called complete pivoting has the property that the associated 
growth factor bound is considerably smaller than 2n- 1 . Recall that in partial pivoting, 
the kth pivot is determined by scanning the current subcolumn A(k:n, k) .  In complete 
pivoting, the largest entry in the current submatrix A(k:n, k:n) is permuted into the 
(k, k) position. Thus, we compute the upper triangularization 

Mn-1IIn- 1 · · · J\!fiII1Af1 · · · f n- 1 = U. In step k we are confronted with the matrix 

A<k- l ) = Mk-1IIk- 1 · · · M1II1Af1 · · · fk- 1 
and determine interchange permutations Ilk and rk such that 
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Algorithm 3.4.3 (Outer Product LU with Complete Pivoting) This algorithm com
putes the factorization P AQT = LU where P is a permutation matrix encoded by 
piv ( l :n - 1 ) ,  Q is a permutation matrix encoded by colpiv( l :n - 1 ) ,  L is unit lower 
triangular with l £i; I ::;: 1 ,  and U is upper triangular. For i = l :n, A(i , i :n) is overwritten 
by U(i , i :n) and A(i + l :n, i ) is overwritten by L(i + l :n, i ) .  The permutation P is given 
by P = Iln- l · · · Il1 where Ilk is an interchange permutation obtained by swapping 
rows k and rowpiv(k) of In . The permutation Q is given by Q = r n- 1 · · · ri where rk 
is an interchange permutation obtained by swapping rows k and colpiv(k) of In . 

for k =  l :n - 1  

end 

Determine µ with k ::;: µ ::;: n and ..X with k ::;: A ::;: n so 
IA(µ, .X) I = max{ IA(i , j ) I : i = k:n, j = k:n }  

rowpiv(k) = µ 

A(k, l :n) ++ A(µ, l :n) 
colpiv (k) = A 

A(l :n, k) ++ A ( l :n , .X) 
if A(k, k) =f: 0 

p =  k +  l :n 
A(p, k) = A(p, k)/A(k, k) 

A(p, p) = A(p, p) - A(p, k)A(k, p) 
end 

This algorithm requires 2n3 /3 fl.ops and O(n3 ) comparisons. Unlike partial pivoting, 
complete pivoting involves a significant floating point arithmetic overhead because of 
the two-dimensional search at each stage. 

With the factorization P AQT = LU in hand the solution to Ax = b proceeds as 
follows: 

Step 1. Solve Lz = Pb for z. 
Step 2. Solve Uy = z for y. 
Step 3. Set x = QT y. 

The rowpiv and colpiv representations can be used to form Pb and Qy, respectively. 
Wilkinson ( 1961 )  has shown that in exact arithmetic the elements of the matrix 

A(k) = MkITk · · · M1Il1Ar1 · · · rk satisfy 

(3.4 .10) 

The upper bound is a rather slow-growing function of k. This fact coupled with vast 
empirical evidence suggesting that p is always modestly sized (e.g, p = 10) permit us to 
conclude that Gaussian elimination with complete pivoting is stable. The method solves 
a nearby linear system (A + E)x = b in the sense of (2 .7 .2 1 ) .  However, in general there 
is little reason to choose complete pivoting over partial pivoting. A possible exception 
is when A is rank deficient . In principal, complete pivoting can be used to reveal the 
rank of a matrix. Suppose rank (  A) = r < n. It follows that at the beginning of step 
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and so the algorithm can be terminated after step r with the following factorization in 
band: p AQT = LU = [ Lu 0 ] [ Uu U12 ] . 

L21 ln-r 0 0 

Here, Lu and Uu are r-by-r and L21 and U'h are (n - r)-by-r. Thus, Gaussian 
elimination with complete pivoting can in principle be used to determine the rank of a 
matrix. Nevertheless, roundoff errors make the probability of encountering an exactly 
zero pivot remote. In practice one would have to "declare" A to have rank k if the 
pivot element in step k + 1 was sufficiently small. The numerical rank determination 
problem is discussed in detail in §5 .5 .  

3.4. 7 Rook Pivoting A third type of LU stablization strategy called rook pivoting provides an interesting 
alternative to partial pivoting and complete pivoting. As with complete pivoting, 
it computes the factorization PAQ = LU. However, instead of choosing as pivot 
the largest value in IA(k :n, k :n) I , it searches for an element of that submatrix that is 
maximal in both its row and column. Thus, if [ 24 36 13 61 l 

42 67 72 50 A(k:n, k:n) = 38 1 1  36 43 ' 
52 37 48 16 

then "72" would be identified by complete pivoting while "52," "72," or "61" would 
be acceptable with the rook pivoting strategy. To implement rook pivoting, the scan
and-swap portion of Algorithm 3.4.3 is changed to 

µ = k, ..\ = k, T = laµA I ,  s = 0 

while T < 1 1  (A(k:n, ..\) I I.xi V T < I I  (A(µ, k :n) 1 1 00 
if mod(s, 2 ) = 0 

end 

Update µ so that laµA I = II (A(k:n, ..\) 1 1 00 with k � µ � n. 
else 

Update ..\ so that laµA I = II (A(µ, k:n) 1 1 00 with k � ..\ � n. 
end 

s = s + l  

rowpiv(k) = µ, A(k, : )  ++ A(µ, : )  colpiv(k) = ..\, A( : ,  k) ++ A( : , ..\) 

The search for a larger laµA I involves alternate scans of A(k:n, ..\) and A(µ, k :n) . The 
value of T is monotone increasing and that ensures termination of the while-loop. In theory, the exit value of s could be O(n - k)2 ) ,  but in practice its value is 0( 1 ) .  See Chang (2002) . The bottom line is that rook pivoting represents the same O(n2) 
overhead as partial pivoting, but that it induces the same level of reliability as complete 
pivoting. 
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3.4.8 A Note on Underdetermined Systems 

If A E nmxn with m < n , rank( A) = m, and b E nm, then the linear system Ax = b 
is said to be underdetermined. Note that in this case there are an infinite number 
of solutions. With either complete or rook pivoting, it is possible to compute an LU 
factorization of the form 

(3.4 . 1 1 )  

where P and Q are permutations, L E  nmxm is unit lower triangular, and U1 E nmxm 
is nonsingular and upper triangular. Note that 

where c = Pb and [ ;� ] = Qx. 

This suggests the following solution procedure: 

Step 1. Solve Ly = Pb for y E nm. 

Step 2. Choose Z2 E nn-m and solve U1 Z1 = y - U2z2 for Z1 . 

Step 3. Set 

Setting z2 = 0 is a natural choice. We have more to say about underdetermined systems 
in §5 .6 .2 .  

3.4.9 The LU Mentality 

We offer three examples that illustrate how to think in terms of the LU factorization 
when confronted with a linear equation situation. 

Example 1. Suppose A is nonsingular and n-by-n and that B is n-by-p. Consider 
the problem of finding X (n-by-p) so AX = B. This is the multiple right hand side 
problem. If X = [ X1 I · · · I Xp ] and B = [ bi I · · · I bp ] are column partitions, then 

Compute PA = LU 
for k =  l :p 

Solve Ly = Pbk and then U Xk = y. 
end 

If B = In , then we emerge with an approximation to A- 1 • 
(3.4. 12) 

Example 2. Suppose we want to overwrite b with the solution to Akx = b where 
A E nnxn, b E nn, and k is a positive integer. One approach is to compute C = Ak 

and then solve Cx = b. However, the matrix multiplications can be avoided altogether: 
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Compute PA = LU. 
for j = l :k  

end 

Overwrite b with the solution to Ly = Pb. 
Overwrite b with the solution to U x = b. 

As in Example 1, the idea is to get the LU factorization "outside the loop ." 
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(3.4. 13) 

Example 3. Suppose we are given A E IRnxn, d E IRn , and c E IRn and that we 
want to compute s =  cT A- 1d. One approach is to compute X = A-1 as discussed in 
(i) and then compute s =  cT Xd. However, it is more economical to proceed as follows: 

Compute PA = LU. 
Solve Ly = Pd and then Ux = y.  
S = CTX 

An "A- 1 " in a formula almost always means "solve a linear system" and almost never 
means "compute A-1 ." 

3.4. 10 A Model Problem for Numerical Analysis 

We are now in possession of a very important and well-understood algorithm (Gaus
sian elimination) for a very important and well-understood problem (linear equations) .  
Let us take advantage of our position and formulate more abstractly what we mean 
by ''problem sensitivity" and "algorithm stability." Our discussion follows Higham 
(ASNA, §1 . 5-1 .6) , Stewart (MA, §4.3) , and Trefethen and Bau (NLA, Lectures 12 ,  14 , 
15, and 22) .  

A problem is a function /:D --+ S from "data/input space" D t o  "solution/output 
space" S. A problem instance is f together with a particular d E D. We assume D 
and S are normed vector spaces. For linear systems, D is the set of matrix-vector pairs 
(A, b) where A E IRnxn is nonsingular and b E IRn . The function f maps (A, b) to A- 1 b, 
an element of S. For a particular A and b, Ax = b is a problem instance. 

A perturbation theory for the problem f sheds light on the difference between f(d) 
and f(d + Ad) where d E D  and d + Ad E D. For linear systems, we discussed in §2.6 
the difference between the solution to Ax = b and the solution to (A + AA) ( x + Ax) = 
(b +  Ab) . We bounded I I Ax 1 1 / 1 1  x I I  in terms of II AA 1 1 / 1 1 A II and I I Ab 1 1 / 1 1 b I I . 

The conditioning of a problem refers to the behavior of f under perturbation 
at d. A condition number of a problem quantifies the rate of change of the solution 
with respect to the input data. If small changes in d induce relatively large changes 
in f(d) , then that problem instance is ill-conditioned. If small changes in d do not 
induce relatively large changes in f ( d) , then that problem instance is well-conditioned. 
Definitions for "small" and "large" are required. For linear systems we showed in 
§2.6 that the magnitude of the condition number K(A) = I I A 1 1 1 1  A- 1 II determines 
whether an Ax = b problem is ill-conditioned or well-conditioned. One might say that 
a linear equation problem is well-conditioned if K(A) :::::: 0(1 )  and ill-conditioned if 
11:(A) :::::: 0( 1/u) . 

An algorithm for computing f(d) produces an approximation f(d) . Depending 
on the situation, it may be necessary to identify a particular software implementation 
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of the underlying method. The j function for Gaussian elimination with partial pivot
ing, Gaussian elimination with rook pivoting, and Gaussian elimination with complete 
pivoting are all different . 

An algorithm for computing f(d) is stable if for some small Ad, the computed 
solution j( d) is close to f ( d + Ad) . A stable algorithm nearly solves a nearby problem. 
An algorithm for computing f ( d) is backward stable if for some small Ad, the computed 
solution j(d) satisfies j(d) = f(d + Ad) . A backward stable algorithm exactly solves a 
nearby problem. Applied to a given linear system Ax = b, Gaussian elimination with 
complete pivoting is backward stable because the computed solution x satisfies 

(A + A)x = b 

and II A 1 1 / 1 1  A I I � O(u) . On the other hand, if b is specified by a matrix-vector product 
b = Mv, then 

(A + A)x = Mv + 8 
where II A 1 1 / 1 1 A II � O(u) and 8/ ( 1 1 M 1 1 1 1  v I I ) � O(u) .  Here, the underlying f is 
defined by f: (A, M, v) � A- 1 (Mv) . In this case the algorithm is stable but not 
backward stable. Problems 
P3.4.l Let A =  LU be the LU factorization of n-by-n A with l iii l � 1 .  Let af and uf denote the 
ith rows of A and U, respectively. Verify the equation 

i- 1 

uf = af - L i,iu] 
j=l 

and use it to show that II U l loo � 2n- l l l  A l loo  . {Hint : Take norms and use induction. ) 
P3.4.2 Show that if P AQ = LU is obtained via Gaussian elimination with complete pivoting, then 
no element of U(i, i:n) is larger in absolute value than l uii l · Is this true with rook pivoting? 
P3.4.3 Suppose A E Rnxn  has an LU factorization and that L and U are known. Give an algorithm 
which can compute the {i , j)  entry of A- 1 in approximately (n - j)2 + (n - i)2 flops. 

P3.4.4 Suppose X is the computed inverse obtained via (3.4. 12) .  Give an upper bound for II AX - I l lr 
P3.4.5 Extend Algorithm 3.4.3 so that it can produce the factorization (3.4. 1 1 ) .  How many flops are 
required? 
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Suppose we apply Gaussian elimination with partial pivoting to the n-by-n system 
Ax = b and that IEEE double precision arithmetic is used. Equation (3.4.9) essentially 
says that if the growth factor is modest then the computed solution x satisfies 

(A + E)x = b, II E l l oo � u l l A l l oo · (3 .5 . 1 )  In this section we explore the practical ramifications of  this result . We begin by stressing the distinction that should be made between residual size and accuracy. This is 
followed by a discussion of scaling, iterative improvement, and condition estimation. See Higham (ASNA) for a more detailed treatment of these topics. 

We make two notational remarks at the outset . The infinity norm is used throughout since it is very handy in roundoff error analysis and in practical error estimation. 
Second, whenever we refer to "Gaussian elimination" in this section we really mean 
Gaussian elimination with some stabilizing pivot strategy such as partial pivoting. 
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3 .5 .1  Residual Size versus Accuracy 

The residual of a computed solution x to the linear system Ax = b is the vector 
b - Ax. A small residual means that Ax effectively "predicts" the right hand side b. 
From Equation 3 .5 . 1  we have I I  b - Ax 1 100 � ul l  A 1 100 1 1  x l loo  and so we obtain 

Heuristic I. Gaussian elimination produces a solution x with a relatively small resid
ual. 

Small residuals do not imply high accuracy. Combining Theorem 2.6 .2 and (3. 5 . 1 ) , we 
see that 

11 x - x l loo 
I I  X l loo  

� Ull:oo (A) • 
This justifies a second guiding principle. 

(3 .5 .2) 

Heuristic II. If the unit roundoff and condition satisfy u � 10-d and 11:00 (A) � lOq, 
then Gaussian elimination produces a solution x that has about d - q correct 
decimal digits. 

If u 11:00 (A) is large, then we say that A is ill-conditioned with respect to the machine 
precision. 

As an illustration of the Heuristics I and II, consider the system [ .986 .579 l [ X1 l = [ .235 l 
.409 .237 X2 . 107 

in which 11:00 (A) � 700 and x = [ 2 ,  -3 ]T . Here is what we find for various machine 
precisions: 

u x1 x2 

10-3 2 . 1 1  -3. 17  
10-4 1 .986 -2.975 
10-5 2.0019 -3.0032 
10-6 2 .00025 -3.00094 

x - x 
II x l loo  

5 . 10-2 
8 . 10-3 

1 · 10-3 

3 . 10-4 

I I  b - Ax l loo  
I I  A l loo l l  X l loo  

2 .0 . 10-3 

1 . 5 . 10-4 

2 . 1 . 10-6 
4.2 . 10-7 

Whether or not to be content with the computed solution x depends on the require
ments of the underlying source problem. In many applications accuracy is not im
portant but small residuals are. In such a situation, the x produced by Gaussian 
elimination is probably adequate. On the other hand, if the number of correct dig
its in x is an issue, then the situation is more complicated and the discussion in the 
remainder of this section is relevant. 

3.5.2 Scaling 

Let /3 be the machine base (typically /3 = 2 ) and define the diagonal matrices D1 == 
diag(/37"1 , • • • , 13r.,. ) and D2 = diag(/3ci , . . . , 13c.,. ) . The solution to the n-by-n linear 
system Ax = b can be found by solving the scaled system (D11 AD2)y = D11 b using 
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Gaussian elimination and then setting x = D2y. The scalings of A, b, and y require 
only O(n2 ) flops and may be accomplished without roundoff. Note that D1 scales 
equations and D2 scales unknowns. 

It follows from Heuristic II that if x and y are the computed versions of x and y, 
then 

(3 .5 .3) 

Thus, if K00 (D11 AD2 ) can be made considerably smaller than K00 (A) , then we might 
expect a correspondingly more accurate x, provided errors are measured in the "D2" 
norm defined by II z l l v2 = I I  D2 i z l loo · This is the objective of scaling. Note that it 
encompasses two issues: the condition of the scaled problem and the appropriateness 
of appraising error in the D2-norm. 

An interesting but very difficult mathematical problem concerns the exact mini
mization of Kp (D1 i AD2) for general diagonal Di and various p. Such results as there 
are in this direction are not very practical. This is hardly discouraging, however, when we recall that (3 .5 .3) is a heuristic result, it makes little sense to minimize exactly a 
heuristic bound. What we seek is a fast , approximate method for improving the quality 
of the computed solution x. 

One technique of this variety is simple row scaling. In this scheme D2 is the 
identity and Di is chosen so that each row in Di i A has approximately the same oo

norm. Row scaling reduces the likelihood of adding a very small number to a very large 
number during elimination-an event that can greatly diminish accuracy. 

Slightly more complicated than simple row scaling is row-column equilibration. 
Here, the object is to choose Di and D2 so that the oo-norm of each row and column 
of Dii AD2 belongs to the interval [1/.B, 1) where .B is the base of the floating point 
system. For work along these lines, see McKeeman ( 1962) . 

It cannot be stressed too much that simple row scaling and row-column equilibra
tion do not "solve" the scaling problem. Indeed, either technique can render a worse z than if no scaling whatever is used. The ramifications of this point are thoroughly discussed in Forsythe and Moler (SLE, Chap. 1 1 ) .  The basic recommendation is that 
the scaling of equations and unknowns must proceed on a problem-by-problem basis. 
General scaling strategies are unreliable. It is best to scale (if at all) on the basis of 
what the source problem proclaims about the significance of each ai; . Measurement 
units and data error may have to be considered. 

3.5.3  Iterative I mprovement 

Suppose Ax = b has been solved via the partial pivoting factorization PA = LU and 
that we wish to improve the accuracy of the computed solution x. If we execute 

r = b - Ax 
Solve Ly = Pr. 
Solve Uz = y. 

Xnew = x + z  

(3.5 .4) 

then in exact arithmetic Axnew = Ax + Az = (b - r) + r = b. Unfortunately, the naive 
floating point execution of these formulae renders an Xnew that is no more accurate 
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than x. This is to be expected since f = fl (b - Ax) has few, if any, correct significant 
digits. (Recall Heuristic I . ) Consequently, z = fl (A- 1r) � A-1 · noise � noise is 
a very poor correction from the standpoint of improving the accuracy of x .  However, 
Skeel ( 1980) has an error analysis that indicates when (3 .5 .4) gives an improved Xnew 
from the standpoint of backward error. In particular, if the quantity 

is not too big, then (3 .5 .4) produces an Xncw such that (A + E)xnew = b for very 
small E. Of course, if Gaussian elimination with partial pivoting is used, then the 
computed x already solves a nearby system. However, this may not be the case for 
certain pivot strategies used to preserve sparsity. In this situation, the fixed precision 
iterative improvement step (3 .5 .4) can be worthwhile and cheap. See Arioli , Demmel, 
and Duff ( 1988) . 

In general, for (3.5 .4) to produce a more accurate x, it is necessary to compute 
the residual b - Ax with extended precision floating point arithmetic. Typically, this 
means that if t-digit arithmetic is used to compute PA = LU, x, y, and z, then 2t-digit 
arithmetic is used to form b - AX. The process can be iterated. In particular, once we 
have computed PA = LU and initialize x = 0, we repeat the following: 

r = b - Ax (higher precision) 
Solve Ly = Pr for y and Uz = y for z.  (3.5.5) 
x = x + z  

We refer to this process as mixed-precision iterative improvement. The original A 
must be used in the high-precision computation of r. The basic result concerning the 
performance of (3.5 .5) is summarized in the following heuristic: 

Heuristic III. If the machine precision u and condition satisfy u = 10-d and K00 (A) RS 
lOq ,  then after k executions of {3. 5. 5), x has approximately min{d,k(d - q) }  cor
rect digits if the residual computation is performed with precision u2 • 

Roughly speaking, if u it00 (A) � 1 , then iterative improvement can ultimately produce 
a solution that is correct to full (single) precision. Note that the process is relatively 
cheap. Each improvement costs O (n2 ) , to be compared with the original O (n3 ) invest
ment in the factorization PA = LU. Of course, no improvement may result if A is 
badly conditioned with respect to the machine precision. 

3.5.4 Condition Estimation 

Suppose that we have solved Ax = b via PA = LU and that we now wish to ascertain 
the number of correct digits in the computed solution x. It follows from Heuristic II that 
in order to do this we need an estimate of the condition K00 (A) = II A 1 100 1 1  A-1 l loo ·  
Computing I I  A l loo poses no problem as we merely use the O (n2 ) formula (2 .3 . 10) . 
The challenge is with respect to the factor I I  A-1 l l oo · ConceiV'<1.bly, we could esti
mate this quantity by I I  X 1 100 1  where X = [ X1 I · · ·  I Xn ] and Xi is the computed 
solution to Axi = ei . (See §3.4.9. ) The trouble with this approach is its expense: 

P;,00 = I I  A 1 1 00 1 1 X 1 1 00 costs about three times as much as x. 
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The central problem of condition estimation is how to estimate reliably the con
dition number in O(n2 ) flops assuming the availability of PA = LU or one of the 
factorizations that are presented in subsequent chapters. An approach described in 
Forsythe and Moler (SLE, p. 51 )  is based on iterative improvement and the heuristic 

UK:oo(A) � II Z l loo/ l l  X l loo  

where z i s  the first correction of  x in  (3 .5 .5) . 
Cline, Moler, Stewart , and Wilkinson ( 1979) propose an approach to the condition 

estimation problem thatis based on the implication 

Ay = d :=::} I I  A- 1 l loo  � II y l loo/ l l  d l loo ·  

The idea behind their estimator i s  to  choose d so  that the solution y i s  large in  norm 
and then set 

Koo = II A l loo l l  Y l loo/ l l  d l loo ·  

The success of this method hinges on how close the ratio I I  y 1 1 00/ l l d 1 1 00 i s  to  its maxi
mum value I I A- 1 l loo ·  

Consider the case when A = T is upper triangular. The relation between d and y is completely specified by the following column version of back substitution: 

p(l :n) = 0 
for k = n: - 1 : 1 

Choose d( k) .  

y(k) = (d(k) - p(k) )/T(k, k) 

p( l : k  - 1 ) = p(l :k - 1) + y(k)T( l :k  - 1 , k) 
end 

(3 .5 .6) 

Normally, we use this algorithm to solve a given triangular system Ty = d. However, 
in the condition estimation setting we are free to pick the right-hand side d subject to 
the "constraint" that y is large relative to d. 

One way to encourage growth in y is to choose d(k) from the set {- 1 , +1 } so as 
to maximize y(k) . If p(k) � 0, then set d(k) = -1 .  If p(k) < 0, then set d(k) = +l . In other words, (3 .5 .6) is invoked with d(k) = -sign(p(k) ) .  Overall, the vector d has 
the form d(l :n) = [± 1 , . . .  , ±lf. Since this is a unit vector, we obtain the estimate f;,oo = I I  T l loo l l  Y l loo ·  A more reliable estimator results i f  d(k) E {- 1 , + 1 }  i s  chosen so as to  encourage 
growth both in y(k) and the running sum update p( l :k - 1 , k) + T(l : k  - 1 , k)y(k) . In 
particular, at step k we compute 

y(k)+ = (1 - p(k) ) /T(k, k) , 

s (k)+ = l y(k)+ I + I I  p( l :k  - 1) + T(l :k  - 1 , k)y(k)+ 1 1 1 , 

y(k) - = (- 1 - p(k))/T(k, k ) ,  

s(k)- = ly(k)- 1 + I I  p( l : k  - 1 ) + T(l :k  - 1 , k)y(k) - 1 1 1 ,  
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and set { y(k)+ if s(k)+ ;::: s(k )- , 
y(k) = 

y(k) - if s(k)+ < s(k) - . 

This gives the following procedure. 

Algorithm 3.5 .1  (Condition Estimator) Let T E Rnxn be a nonsingular upper trian
gular matrix. This algorithm computes unit co-norm y and a scalar K so II Ty 1 100 � 
1/ 1 1  T- 1 l loo  and K � Koo (T) 

p( l :n) = 0 

for k = n: - 1 : 1 

end 

y(k)+ = ( 1 - p(k) )/T(k, k) 

y(k )- = (- 1 - p(k))/T(k, k) 
p(k)+ = p(l :k - 1 )  + T(l :k  - 1 ,  k)y(k)+ 
p(k)- = p(l :k  - 1 )  + T(l :k  - 1 ,  k)y(k)-
if ly(k)+ I + l l P(k)+ 1 1 1 ;::: ly(k)- 1 + l l P(k) - 1 1 1 

y(k) = y(k)+ 
p( l :k  - 1 )  = p(k)+ 

else 

y(k) = y(k) 
p( l :k - 1 )  = p(k)

end 

K = II Y l loo II T l loo  

Y = Y/ 1 1  Y l loo  

The algorithm involves several times the work of  ordinary back substitution. 
We are now in a position to describe a procedure for estimating the condition of 

a square nonsingular matrix A whose PA = LU factorization is available: 
Step 1 .  Apply the lower triangular version of Algorithm 3 .5 . 1  to UT and 

obtain a large-norm solution to UT y = d. 
Step 2. Solve the triangular systems LTr = y, Lw = Pr, and Uz = w. 

Step 3. Set Koo = II A l loo l l  z l loo/ l l  r l loo · 

Note that II z 1 100 :$ I I  A-1 1 100 1 1 r 1 100 • The method is based on several heuristics. First, 
if A is ill-conditioned and PA = LU, then it is usually the case that U is correspondingly 
ill-conditioned. The lower triangle L tends to be fairly well-conditioned. Thus, it is 
more profitable to apply the condition estimator to U than to L. The vector r, because 
it solves AT pT r = d, tends to be rich in the direction of the left singular vector 
associated with CTmin (A) . Right-hand sides with this property render large solutions to 
the problem Az = r. 

In practice, it is found that the condition estimation technique that we have 
outlined produces adequate order-of-magnitude estimates of the true condition number. 
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problems 

p3,5.l Show by example that there may be more than one way to equilibrate a matrix. 
p3,5.2 Suppose P(A + E) = LU, where P is a permutation, L is lower triangular with liij I ::; 1, and (J is upper triangular. Show that t'toc(A) 2: 11 A l loo/( 1 1  E ! loo + µ) where µ =  min luii l · Conclude that 
if a small pivot is encountered when Gaussian elimination with pivoting is applied to A, then A is 
ill-conditioned. The converse is not true. (Hint: Let A be the matrix Bn defined in (2.6.9) ) .  
p3,5.3 (Kahan ( 1966)) The system Ax = b where [ 2 - 1  1 l [ 2( 1 + 10- 10 )  l 

A = - 1 10- 10 10- 10 , b = -10- 10 
1 10- 10 10- 10 10- 10 has solution x = [10- 10 - 1 l]T . (a) Show that if (A + E)y = b and IEI ::; 10-8 IA I , then Ix - YI ::; 

10-7 1x l . That is, small relative changes in A's entries do not induce large changes in x even though 
1'oo(A) = 1010 .  (b) Define D = diag(l0-5 ,  105 ,  105 ) .  Show that Koo (DAD) ::; 5. (c) Explain what is 
going on using Theorem 2.6.3. 

P3.5.4 Consider the matrix: 
0 
1 
0 
0 

M 
-M 

1 
0 

-M l 1 M E R . 

What estimate of 11:00(T) is produced when (3.5.6) is applied with d(k) = -sign(p(k) ) ?  What estimate does Algorithm 3.5 .1 produce? What is the true K00 (T)? 

P3.5.5 What does Algorithm 3.5. 1 produce when applied to the matrix Bn given in (2.6.9)? 
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tions," IMA J. Numer. Anal. 1 7, 7-16. 3.6 Paral lel LU 

In  §3.2 . 1 1  we show how to  organize a block version o f  Gaussian elimination (without 
pivoting) so that the overwhelming majority of flops occur in the context of matrix 
multiplication. It is possible to incorporate partial pivoting and maintain the same 
level-3 fraction. After stepping through the derivation we proceed to show how the 
process can be effectively parallelized using the block-cyclic distribution ideas that 
were presented in § 1 .6 .  

3.6 . 1 Block LU with Pivoting 

Throughout this section assume A E lRnxn and for clarity that n = rN: 

(3.6.1 )  

We revisit Algorithm 3.2 .4 (nonrecursive block LU) and show how to incorporate partial 
pivoting. 
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The first step starts by applying scalar Gaussian elimination with partial pivoting to the first block column. Using an obvious rectangular matrix version of Algorithm 
3,4. l  we obtain the following factorization: 

(3.6 .2) 

In this equation, P1 E JR.nxn is a permutation, Lu E wxr is unit lower triangular, and Un E wxr is upper triangular. 
The next task is to compute the first block row of U. To do this we set 

.J. . E wxr i ,3 ' (3.6.3) 

a.nd solve the lower triangular multiple-right-hand-side problem 

Lu [ U12 I · · · I U1N ] = [ A12 I · · · J A1N ] (3.6 .4) 
for U12 , . . .  ' U1N E wxr. At this stage it is easy to show that we have the partial 
factorization 

Ln 0 
L21 Ir P1A 
LN l 0 

0 Uu 0 Ir 0 0 : 0 A{new) : 
Ir 0 0 

where 

A22 
A{new) = _ :  

AN2 
(3.6 .5) 

Note that the computation of A(new) is a level-3 operation as it involves one matrix 
multiplication per A-block. 

if 

and 

The remaining task is to compute the pivoted LU factorization of A(new) . Indeed, 

p(new) A(new) = L(ncw) u(new) 
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then 

p A = 0 
L<•••l 

0 l t 
LN1 0 

is the pivoted block LU factorization of A with 

P = Pi . 
[ Ir 0 l 0 p(new) 

In general, the processing of each block column in A is a four-part calculation: 

Part A. Apply rectangular Gaussian Elimination with partial pivoting to a block 
column of A. This produces a permutation, a block column of L, and a diagonal 
block of U. See (3.6 .2) . 

Part B. Apply the Part A permutation to the "rest of A." See (3.6.3) . 

Part C. Complete the computation of U's next block row by solving a lower trian
gular multiple right-hand-side problem. See (3.6.4) . 

Part D. Using the freshly computed £-blocks and U-blocks, update the "rest of A." 
See (3.6 .5) . 

The precise formulation of the method with overwriting is similar to Algorithm 3.2.4 
and is left as an exercise. 

3.6 .2 Parallelizing the Pivoted Block LU Algorithm 

Recall the discussion of the block-cyclic distribution in § 1 .6 .2 where the parallel com
putation of the matrix multiplication update C = C + AB was outlined. To provide 
insight into how the pivoted block LU algorithm can be parallelized , we examine a rep
resentative step in a small example that also makes use of the block-cyclic distribution. 

Assume that N = 8 in (3 .6 . 1 )  and that we have a Prow-bY-PcoI processor network 
with Prow = 2 and Pcol = 2. At the start , the blocks of A = (Aij ) are cyclically 
distributed as shown in Figure 3.6 . 1 .  Assume that we have carried out two steps of 
block LU and that the computed Lij and Uij have overwritten the corresponding A
blocks. Figure 3.6 .2 displays the situation at the start of the third step. Blocks that 
are to participate in the Part A factorization [A33 ] [£33 ] 

P3 
A
�
3 

= 
L
�
3 

Ua3 

are highlighted. Typically, Prow processors are involved and since the blocks are each 
r-by-r, there are r steps as shown in (3.6.6) . 
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Figure 3.6. 1 .  

Part A: 

Figure 3.6 .2 .  



148 Chapter 3. Genera l L inear Systems 

for j = l :r 

end 

Columns Akk ( : , j ) ,  . . .  , AN,k ( : , j ) are assembled in 
the processor housing Akk , the "pivot processor" 

The pivot processor determines the required row interchange and 
the Gauss transform vector 

The swapping of the two A-rows may require the involvement of 
two processors in the network 

The appropriate part of the Gauss vector together with 
Akk (j, j :r) is sent by the pivot processor to the 
processors that house Ak+ l ,k , . . .  , AN,k 

The processors that house Akk , . . .  , AN,k carry out their 
share of the update, a local computation 

{3.6.6) 

Upon completion, the parallel execution of Parts B and C follow. In the Part B compu
tation, those blocks that may be involved in the row swapping have been highlighted. 
See Figure 3.6 .3 . This overhead generally engages the entire processor network, al
though communication is local to each processor column. 

Part B: 

Figure 3.6 .3 .  

Note that Part C involves just a single processor row while the "big" level-three update 
that follows typically involves the entire processor network. See Figures 3.6 .4 and 3.6.5. 
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Part C: 

Figure 3.6 .4 . 

Part D :  

Figure 3.6 .5 .  
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The communication overhead associated with Part D is masked by the matrix multi
plications that are performed on each processor. 

This completes the k = 3 step of parallel block LU with partial pivoting. The 
process can obviously be repeated on the trailing 5-by-5 block matrix. The virtues of 
the block-cyclic distribution are revealed through the schematics. In particular, the 
dominating level-3 step (Part D) is load balanced for all but the last few values of 
k. Subsets of the processor grid are used for the "smaller," level-2 portions of the 
computation. 

We shall not attempt to predict the fraction of time that is devoted to these 
computations or the propagation of the interchange permutations. Enlightenment in 
this direction requires benchmarking. 

3 .6 .3  Tournament Pivoting 

The decomposition via partial pivoting in Step A requires a lot of communication. An 
alternative that addresses this issue involves a strategy called tournament pivoting. 
Here is the main idea. Suppose we want to compute PW = LU where the blocks of 

are distributed around some network of processors. Assume that each Wi has many 
more rows than columns. The goal is to choose r rows from W that can serve as pivot 
rows. If we compute the "local" factorizations 

via Gaussian elimination with partial pivoting, then the top r rows of the matrices 
P1 Wi , P2 W2 , Pa Wa , are P4 W4 are pivot row candidates. Call these square matrices 
W{ , W� , w3 , and W� and note that we have reduced the number of possible pivot rows 
from n to 4r. 

Next we compute the factorizations 

= P12 [ W{ ] w� 

W' 3 
W' 4 ] = 

and recognize that the top r rows of P12 W{2 and the top r rows of Pa4 W34 are even 
better pivot row candidates. Assemble these 2r rows into a matrix W1234 and compute 

P1234 W12a4 = Li234U1234 . 

The top r rows of P1234 W1234 are then the chosen pivot rows for the LU reduction of 
w. 

Of course, there are communication overheads associated with each round of the 
"tournament," but the volume of interprocessor data transfers is much reduced. See 
Demmel, Grigori, and Xiang (2010) . 
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Problems 

p3.6.l In §3.6. 1 we outlined a single step of block LU with partial pivoting. Specify a complete 
version of the algorithm. 

p3.6.2 Regarding parallel block LU with partial pivoting, why is it better to "collect" all the per

mutations in Part A before applying them across the remaining block columns? In other words, why 

not propagate the Part A permutations as they are produced instead of having Part B, a separate 

permutation application step? 

P3.6.3 Review the discussion about parallel shared memory computing in § 1 .6.5 and § 1 .6.6. Develop a 

shared memory version of Algorithm 3.2 . 1 .  Designate one processor for computation of the multipliers and a load-balanced scheme for the rank- 1 update in which all the processors participate. A barrier 
is necessary because the rank- 1 update cannot proceed until the multipliers are available. What if 
partial pivoting is incorporated? 

Notes and References for §3 .6 See the scaLAPACK manual for a discussion of parallel Gaussian elimination as well as: J. Ortega ( 1988) .  Introduction to Parallel and Vector Solution of Linear Systems, Plenum Press, New 
York. K. Gallivan, W. Jalby, U. Meier, and A.H. Sameh ( 1988) .  "Impact of Hierarchical Memory Systems 
on Linear Algebra Algorithm Design," Int. J. Supercomput. Applic. 2, 12---48. J. Dongarra, I . Duff, D. Sorensen, and H. van der Vorst ( 1990) .  Solving Linear Systems on Vector 
and Shared Memory Computers, SIAM Publications, Philadelphia, PA . 

Y. Robert ( 1990) . The Impact of Vector and Parallel Architectures on the Gaussian Elimination 
Algorithm, Halsted Press, New York. J. Choi, J .J .  Dongarra, L.S. Osttrouchov, A.P. Petitet, D.W. Walker, and R.C. Whaley ( 1996) . "Design 
and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization Routines," Scientific 
Programming, 5, 173-184. 

X.S. Li (2005) .  "An Overview of SuperLU: Algorithms, Implementation, and User Interface," A CM Trans. Math. Softw. 31, 302-325. 
S. Tomov, J. Dongarra, and M. Baboulin (2010) .  "Towards Dense Linear Algebra for Hybrid GPU 

Accelerated Manycore Systems," Parallel Comput. 36, 232-240. 

The tournament pivoting strategy is a central feature of the optimized LU implementation discussed in: J. Demmel, L. Grigori , and H. Xiang (201 1 ) .  "CALU: A Communication Optimal LU Factorization 
Algorithm," SIAM J. Matrix Anal. Applic. 32, 1317-1350. E. Solomonik and J .  Demmel (201 1 ) .  "Communication-Optimal Parallel 2.5D Matrix Multiplication and LU Factorization Algorithms," Euro-Par 201 1 Parallel Processing Lecture Notes in Computer 
Science, 201 1 ,  Volume 6853/201 1 ,  90-109. 
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