Last updated: Sunday 13 ${ }^{\text {th }}$ February, 2022 at 20:16.

Programming assignment \#2: electrostatics on a lattice

Let $N>0$ be a positive integer, and consider a uniform grid of points:

$$
\begin{equation*}
\boldsymbol{x}_{i, j}=(i, j) \in \mathbb{R}^{2}, \quad 0 \leq i \leq N, \quad 0 \leq j \leq N \tag{1}
\end{equation*}
$$

We will consider an equilibrium electrostatics problem on this grid, thinking of it as a lattice of nodes, with each node being connected to its four nearest neighbors in the cardinal directions (north, south, east, and west). Let $\boldsymbol{u} \in \mathbb{R}^{(N+1)^{2}}$ be a vector which contains the electric potentials at each grid node, assuming that the nodes are inserted row-by-row, from top to bottom and left to right so that:

$$
\begin{equation*}
\boldsymbol{u}_{k}=u\left(\boldsymbol{x}_{i, j}\right), \quad k=(N+1) i+j, \quad 0 \leq k<(N+1)^{2} . \tag{2}
\end{equation*}
$$

If \boldsymbol{u}_{k} and \boldsymbol{u}_{l} give the potential for two connected grid points, the flux through the edge that connects them is $\pm\left(\boldsymbol{u}_{k}-\boldsymbol{u}_{l}\right)$. We require the fluxes to balance. That is, for each k such that $0 \leq k<(N+1)^{2}$, we require:

$$
\begin{equation*}
\sum_{l \sim k}\left(\boldsymbol{u}_{k}-\boldsymbol{u}_{l}\right)=4 \boldsymbol{u}_{k}-\sum_{l \sim k} \boldsymbol{u}_{k}=0 \tag{3}
\end{equation*}
$$

where " $l \sim k$ " means that the grid points indexed by the l and k are neighbors.
Next, we assume that the electric potential u is equal to zero on the boundary nodes of the grid:

$$
\begin{equation*}
u\left(\boldsymbol{x}_{i, j}\right)=0 \quad \text { if } \quad i=0, N \quad \text { or } \quad j=0, N . \tag{4}
\end{equation*}
$$

If we let the remaining values of u be variables, then we are left with a matrix equation of the form:

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{u}=\mathbf{0} \tag{5}
\end{equation*}
$$

where $\boldsymbol{A} \in \mathbb{R}^{(N-1)^{2} \times(N-1)^{2}}$ and $\boldsymbol{u} \in \mathbb{R}^{(N-1)^{2}}$.

Problem 1. Compute \boldsymbol{A} for $N=10$ and use matplotlib's imshow command to make a plot of its entries. Be sure to include a colorbar and choose an appropriate colormap so that is easy to visualize. In particular, make sure that the zero entries of \boldsymbol{A} are colored in white. Hint: note very carefully the size of \boldsymbol{A} and the consequence of assuming that the boundary values of u equal zero. Work from (3).

Problem 2. Write a function with the signature:

$$
L, U, P=l u(A)
$$

which computes the LU decomposition of a (possibly non-symmetric!) matrix A using partial pivoting, and so that afterwards $P A=L U$ holds. Hint: test this on some small matrices and compare the result with $n p$. linalg. lu as you go.

Problem 3. Using lu, compute the LU decomposition of \boldsymbol{A} for $N=10,20,30,40$, and 50. Plot \boldsymbol{L} in the same way you plotted \boldsymbol{A} in Problem 1. Count the number of nonzeros of the L factor, and find its lower bandwidth (the number of diagonals of the matrix that contain nonzero values). Make two plots of the number of nonzeros of \boldsymbol{L} and the lower bandwidth of \boldsymbol{L}, each with N on the horizontal axis.

Problem 4. Write two functions:

$$
x=f s o l v e(L, b) \quad x=\operatorname{bsolve}(U, b)
$$

which do forward substitution (solve a linear system $\boldsymbol{L} \boldsymbol{x}=\boldsymbol{b}$ where L is lower-triangular) and backwards substitution (solve a linear system $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{b}$ where U is upper-triangular), respectively. For $N=50$, use these functions and your function lu to solve:

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{\phi}_{i, j}=\boldsymbol{e}_{i, j} \tag{6}
\end{equation*}
$$

where $\boldsymbol{e}_{i, j}$ is the (k, l) the standard basis vector-i.e., it has a 1 in the position corresponding to $\boldsymbol{x}_{i, j}$, and 0 s everywhere else. Make a 3D plot of $\boldsymbol{\phi}_{i, j}$ as the graph of a function using mplot3d for a few different choices of (i, j) after rearranging the entries of ϕ to lie on a square grid (so that they match the 2D layout of the grid nodes $\boldsymbol{x}_{i, j}$).

