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Programming assignment #3: eigenvalues

Problem 1. Program the power method and inverse power method to compute the max-
imum and minimum eigenvalue/eigenvector pairs of the symmetric matrix A ∈ Rn×n.

To test your code, you can create a random eigenvalue decomposition with specified
eigenvalues as follows:

Q = np.random.randn(n, n) # sample a matrix with iid N(0, 1) entries

Q = np.linalg.qr(Q)[0] # the Q factor in its QR decomposition is an

# orthogonal matrix sampled uniformly from

# the orthgonal group O(n)

Lam = np.diag(...) # set the diagonal matrix of eigenvalues manually

A = Q@Lam@Q.T # compute A from Q and Lam

This way you can fix the values of λ1 and λ2 (or 1/λn and 1/λn−1) to control the convergence
rate of the (inverse) power method.

Make a plot (or several plots) of the convergence of the (inverse) power method for several
different eigenvalue ratios. Since you set the eigenvalues of your test matrix A yourself, you
can easily compare with the true solution. Your plot(s) should show evidence that the
convergence rate is largely controlled by, e.g., λ2/λ1.

(Note: in this problem, I would like you to look at both the power method and the inverse
power method. For the inverse power method, use np.linalg.lu or scipy.linalg.lu

instead of your own LU decomposition to compute the LU decomposition of A. You can
then use the function scipy.linalg.solve triangular to do the forward and backward
solves involving your triangular factors.)

Problem 2. Incorporate shifts into your power method (i.e., apply the power method and
inverse power method to the shifted matrix A− λI). Come up with a strategy for choosing
the shift λ to accelerate the convergence of the power method. Note: the shift can vary from
iteration to iteration. In general, there can be many possible strategies—you must simply
come up with some strategy that reduces the overall number of iterations. However, be
careful with the inverse power method: if you change the shift, you must recompute the LU
decomposition used to apply (A− λI)−1 at each step.

Problem 3. Recall the matrix A ∈ R(N−1)2×(N−1)2 from PHW #2. This matrix is sparse—
that is, it has O(N2) rows and columns, but only O(N2) nonzero entries. Storing the zeros
of A is extremely wasteful, since it requires us to store O(N4) entries instead of only O(N2).

Read about the compressed sparse row (CSR) sparse matrix format. SciPy provides a
class implementing a sparse matrix using the CSR format: see scipy.sparse.csr matrix.

Set up a version of A for N = 64 using scipy.sparse.csr matrix. Next, read the
documentation for the function scipy.sparse.linalg.eigsh. Use it to compute the k = 16
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https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html


smallest nonzero eigenvalues and eigenvectors of A (hint : use the sigma keyword argument).
Using plt.subplot, make a 4 × 4 grid of 2D plots of each of the eigenvectors, as well as a
plot of the eigenvalues that you compute.

Problem 4a. The matrix A can be interpreted as a graph. Its rows and columns are
naturally identified with the nodes in the original lattice, which we think of as the graph’s
vertices. There is an edge between a pair of vertices if the corresponding pair of nodes is
adjacent in the lattice. Recall from lecture that A is a discretized Laplacian.

On the other hand, if we start with a graph G = (V,E), where N = |V | and V =
{v1, . . . , vN} is the set of vertices and E = {(i, j) : vi and vj are adjacent} is the set of edges,
we can define the graph Laplacian L ∈ RN×N by:

Lij =


deg(vi) if i = j,

−1 if (i, j) ∈ E,
0 otherwise.

(1)

Note that the adjacent matrix A ∈ RN×N for G is defined by:

Aij =

[
1 if (i, j) ∈ E,
0 otherwise.

]
(2)

Download a graph from:

https://sites.google.com/site/xiaomengsite/research/resources/graph-dataset

or some other website online. Load it using Python and build a CSR version of L for your
graph. Next, as in Problem 3, use scipy.sparse.linalg.eigsh (note that L should be
symmetric!) to compute the first k = 2 smallest nonzero eigenvalue and eigenvector pairs of
L. Let u1 and u2 be these eigenvectors, and experiment with making plots of u1 and u2 to
visualize the graph. Please be creative and feel free to experiment.

(Hint : the process of getting your graph into Python and building L may be annoying
and require some data processing. Don’t be a hero—use a relatively simple graph to make
this easy. Between a few hundred vertices and a few thousand vertices is a good target.)

Problem 4b (bonus). Compute u3 and make a 3D visualization of your graph. I recom-
mend starting with mplot3d for 3D plotting, but feel free to contact me for more recommen-
dations, and feel free to experiment.

Problem 5 (bonus). Read about bipartite graphs online. An off-diagonal block of the
adjaceny matrix (not the graph Laplacian matrix L!) of your graph from Problem 4 is a
bipartite graph. Pick such an off-diagonal block and denote it AI,J , where I and J are the
row and column indices of the block (I ∩ J = ∅).

Let m = |I| and n = |J | and p = min(m,n). Compute the singular value decomposition
AI,J = UΣV >, where U ∈ Rm×p, V ∈ Rn×p, and Σ ∈ Rp×p. Do this using np.linalg.svd
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with full matrices=False. Make a semilogy plot of the singular values σ1, . . . , σp and
observe how rapidly they decay.

Next, compute a truncated SVD by retaining only the first k < p terms of the singular
value decompositions, recalling that we can write:

AI,J = UΣV > =

p∑
i=1

σiuiv
>
i . (3)

Define:

A
(k)
I,J =

k∑
i=1

σiuiv
>
i . (4)

Since AI,J is sparse, the singular matrices U and V should be sparse. Indeed, A(k) should be
sparse, as well, and can be interpreted as an approximation to the original graph represented
by the bipartite adjacency matrix AI,J .

For several different choices of I and J , vary k and make visualizations of the bipartite
graphs corresponding to A

(k)
I,J . You do not have to use the visualization method you came

up with for Problem 4, but you are free to do so. Write up your observations in a short
paragraph or two and include it as a separate PDF file with your submission.
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