
Last updated: Monday 2nd May, 2022 at 11:55.

Programming assignment #4
In this homework, we’ll explore implementing the sine function, y = sin(x).

Problem 1. Some values of sin and cos should be known to you (e.g., sin(kπ) = 0 for
k ∈ Z, sin(π/2) = 1, …). Recall that d

dx
sin(x) = cos(x) and d

dx
cos(x) = − sin(x). Using

only known values of sin and cos, program a piecewise Hermite approximation of sin and
cos of arbitrary degree. That is, write a function y = sin(x, p) which will approximate
y = sin(x, p) for any value of x, where p is the degree of the Hermite interpolant. Here are
some hints:

• Use the fact that sin and cos are 2π-periodic.

• Note the simple relationships among the derivatives of sin and cos.

• You should be able to divide [0, 2π] into at least 8 equal subintervals. Dividing it into
fewer subintervals might be dangerous.

• Although Method I and Method II (see WHW#4) will work for low degree, you will run
into trouble for higher degrees. Use the method of interpolation based on Newton’s
interpolating polynomial (this will require you to learn and use generalized divided
differences).

• To make this clear: first you determine which subinterval x belongs to, then you apply
Newton interpolation over that that subinterval...

Problem 2. Make plots of the errors of your interpolants and explain their behavior (in-
clude an extra short file with a written explanation—do not answer in your Python file using
comments). Do this for varying p (you must choose the range yourself). When you plot the
error, it is recommended to plot the absolute relative error using a semilogy plot. This will
give a sense of the order of accuracy over the interval [0, 2π].

(Hint: when you make these plots, use x = np.linspace(0, 2*np.pi, N) to get the x
values. When you make the plots, keep increasing N until the plots are sufficiently sampled—
that is, increasing N further should not visibly alter the plots.).

Bonus problem. Let hp(x) be the piecewise Hermite interpolant programmed in Problem
1. When evaluating the error, it is also helpful to estimate quantity:

∥hp − f∥
∥f∥

, f(x) = sin(x). (1)

1

for difference choices of p. As we have seen, there are different norms we could use, e.g.:

∥hp − f∥1,[0,2π] =
∫ 2π

0

|hp(x)− sin(x)|dx, (2)

∥hp − f∥2,[0,2π] =

√∫ 2π

0

|hp(x)− sin(x)|2dx, (3)

∥hp − f∥∞,[0,2π] = max
0≤x≤2π

|hp(x)− sin(x)| (4)

It might be a little unclear how to evaluate these norms using Python. In this problem, you
will learn how to do so in order to evaluate (1) for L1 and L2 norms.

(Note: Evaluating ∥f∥ is simple for the function f(x) = sin(x), and can be done by hand.
The challenging part is dealing with the numerator, ∥hp − f∥.)

For ∥g∥1,[0,2π] and ∥g∥2,[0,2π], consider the following idea:

1. Use the composite trapezoid rule with equally spaced nodes to evaluate the integrals
in (2) or (3).

2. Do this for N + 1 nodes and 2N + 1 nodes, getting two different approximate values
of ∥hp − f∥ / ∥f∥, call them EN and E2N .

3. Check the value of |EN − E2N |. If it is close to machine precision (approximately
10−15 for double precision), then declare victory and use the value of EN as your
approximation.

4. Otherwise, increase the value of N and try again (e.g., set N ← 2N and start over
from Step 2).

This “meta-algorithm” will work fine for the composite trapezoid rule, but you are free to
experiment with other choices of numerical integration.

2

