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1 Fixed Point Iterations

1.1 The Babylonian Method

At the end of the last class we saw the Babylonian Algorithm, an iterative
method for computing square roots by hand.

1/
Yk+1 = 5 (yk -I-yk) (1)
We also learned that if yo > 0 (the initial iterate), then y; converges to /z.
With each additional iteration, the number of digits of accuracy also doubles and
eventually plateaus. This ties into the intricacies of floating point arithmetic
where double precision floats roughly have the capacity for 16 digits of agreement
(capped at a fourth iteration of the Babylonian Algorithm)
The Babylonian Method is an example of a fixed-point iteration which is a
term that describes methods used to compute fixed points of functions.

1.2 FPI - Definition

Fixed Point Iteration 1. Let f : R — R; and let zy be fixed (somehow)
then we’ll call the sequence generated by xp11 = f(zr) where (k > 0) a simple
iteration (aka a fixed point iteration).

1.3 Fixed Point Iteration Conditions

Before looking further there are a few things we need to think about.
1. First, is there anything special about fixed points?

2. Second, if we have an iteration like 21 = f(x) should we automatically
expect convergence to a fixed point?

As a side note, in class we learned that Numerical Analysis largely involves
designing algorithms to solve continuous problems by finding approximate solu-
tions. Often, if the solution for a problem exists at all and the solution is unique,
we will be more likely to succeed in our endeavors. Alternatively, Computer



Science is more often concerned with finding the exact solution to a discrete
problem.
In general Numerical Analysis is concerned with two main concepts:

1. Existence
2. Uniqueness

To apply these concepts to fixed point iterations we can ask - for a function f
should a fixed point exist? If it does, is it unique?
To take things further, the Babylonian Algorithm shows us:

Yr+1 = f(yr)

This begs the question, does (yx)p, converge?

Cauchy Sequences 1. (y)32, is Cauchy (converges) if the following condi-
tions are met:

Ve > 03N(e) > 0 (2)

VYm,n > N(€) : D(Ym,Yn) < € (3)
e N = Some integer
e ¢ = Error tolerance

e D = Distance

(a) Cauchy sequence (b) Non-Cauchy sequence

Figure 1: As seen in the figures above, a Cauchy sequence converges to an
“ultimate destination”, or in other words, a limit clearly exists
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(a) Intermediate Value Theorem

Figure 2: The Intermediate Value Theorem establishes the existence any given
value between f(a) and f(b) at some point within [a, b] given that the function
in continuous throughout the interval.

1.4 Determining the Existence of Fixed Points
1.4.1 Intermediate Value Theorem

The first way to determine the existence of fixed points is to utilize the Inter-
mediate Value theorem or IVT.

Intermediate Value Theorem 1. The theorem states that if f is real-valued:
f € C%Ja,b]) continuous on the interval a,b where a,b is closed and bounded.
Then for each y such that

Join f(z) <y < max f(z) (4)

there exists x € [a, b] such that y = f(x)

1.4.2 Brouwer’s Fixed Point Theorem (in 1D)

Brouwer’s Fixed Point Theorem 1. Assume that f is real-valued and as-
sume that f([a,b]) < [a,b]. Then 3¢ such that f(§) =¢

0

(a) Brouwer’s Theorem

A fixed point for f : R — R is a point where y = x intersects the graph of f.
However, it is not always guaranteed that a fixed point will exist or that there
will be only one fixed point.
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(a) Multiple Fixed Points

As seen above, a function f can have multiple fixed points. If we have
identified multiple points, how can we tell which fixed point the iteration x4 =
f(zy). Food for thought: We can utilize a mapping technique called cobweb
plotting to graphically solve for a fixed point on f. However, depending on
which part of the function you start, the cobweb plot will reach a different fixed
point given that there are multiple fixed points.
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(a) Cobweb Plot

Figure 5: The cobweb plot reaches a fixed point by following a path back and
forth across f C y = .

Note: If f is continuous and f([a, b]) < [a, b] and if 2, generated by xx1 = f(ag)
converges to £ then:
€= lim zper = lim f(ox) = f(lim z) = £(©) (5)
k— o0 k— o0 k—o0

This tells us that if the preconditions for Brouwer’s Theorem hold and the
sequence converges, then it will converge to a fixed point. Given this, we are
left with the questions - Does xj converge and to which fixed point will it
converge to?

1.5 Contractions and Contraction Mapping

To determine a unique fixed-point of convergence it is viable to use contractions
or contraction mapping.



1.5.1 Contraction Definition and Lipschitz Constants

Contraction Definition 1. Let f + C°[a,b] on a finite interval [a,b]. Then
f is a contraction if 3L < 1 such that |f(z) — f(y) < L|z — y| for all z,y.

L is called a Lipschitz Constant for f over the interval [a,b]. To define the
term further: If L > maxq<q<p |f/(2)| then L is a Lipschitz constant for f over
[a,b]. Note: L < 1 is not required for a Lipschitz constant.

1.5.2 Contraction Mapping Theorem

Contraction Theorem 1. If f € C°a,b], f([a,b]) C [a,b], and f is a contrac-
tion on [a,b]. Then f has a unique fixed point £ on [a,b] and zr11 = f(xg)
converges to . To define further - let 41 = f(zr) generate a sequence and
assume it converges to £. Then the basin of attraction of £ is all zy such that
xp — &

To apply the contraction mapping theorem to f over [a, b]:
1. Check if f < C%a, b] if f([a,b]) < [a,b]

2. Compute L = mazg<q<p|f' ()]

3. Check if L <1

4. If the above condition is met, there exists a unique fixed point for f, call
it & in [a, b].

5. Compute &: Pick any g < [a,b] and run 51 = f(x) until convergence.
o At the fixed point 2, = £ and xp41 = f(z) = f(§) =¢&
6. Compute zp4+1 — zf to check accuracy

Note: If you are interested in further research: more general questions can be
answered by discrete dynamical systems (Henon maps, chaotic iterated maps
(2D), etc.).

2 Homework Notes

Sturm Chain Definition 1. Let p, where p(z) = ag + a1z + a2? + azz3....
Define pg = p,p1 = p'(x) = % For n > 2 define ¢, = [gzl—j] where ¢, is

the quotient result of polynomial long division (without the remainder). Then
define, for the same n, p, = ¢n(Prn—1) — Pn—2 stopping when py is constant.
The resulting sequence py, ...., py is called a Sturm chain.



2.1 Sturm’s Theorem

Sturm Chain Theorem 1. Let p be a polynomial. Let a < b define a bounded
interval [a,b] and let po,....,pny be the Sturm chain corresponding to p. Now
consider the table below where A, and A are the number of sign changes in
each row.

poa | pra | ... | pra | = Ag
pob plb pnb — Ab

The number of real roots in (a,b) is |Ay — Agl.

2.1.1 Sturm’s Theorem Example

For example, say you are given a polynomial py = 2% —3xz —1. You can calculate
the Sturm Chain below. Note that it took three iterations to reach a constant.

po=a" —3x—1
p1=5x4—3

1
po = 3(12.% +5)
59083

P3 = 50736

You can then use the Sturm chain to generate the following sign change
table.

H x Sign py Sign p; Sign ps  Sign ps A H
2 - - — + 3
0 — - + + 1
2 - + + 0

This table can now be used to identify the number of roots in each interval.
Az—og — Ayz—2 = 1 therefore there is only one root in this interval. This is a
good place to use a tool such as brentq to identify the single root. However,
Ay—_o—A,—¢ = 2 meaning there are multiple roots in this interval. To proceed,
Sturm’s theorem will need to be reapplied until you are able to separate the roots
into separate intervals.

For the homework, a viable method is combining Sturm’s theorem with bi-
nary search using bisection. Utilizing python generators could also be beneficial
- link to the documentation can be found here.


https://docs.python.org/3/c-api/gen.html
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