Numerical Analysis Notes 01/31/2022

Nikhil Isac

January 31st 2022

1 Announcements

Office Hours:

Tuesday: 7:00pm-9:00pm Via Zoom
Wednesday: 5:00pm-6:00pm, 2MTC room 872 with Professor Potter
Friday: 1:00pm-2:00pm, 2MTC room 858 with Mariana
Class time: 3:30pm-4:50pm

2 Note on Programming Homework 1

Brentq: A 'hybrid rootfinder' which implements Brent's method.
Brentq solves: "find $x \in[a, b]$ such that $f(x)=0$ "
Signature: $x=\operatorname{brentq}(f, a, b, t o l=$ None $)$

- tol: "tolerance," how accurately the root is found.
- f: An instance of something on Python which is callable. . . so if I write
- " $f(x)$ ", where x is a float, then $f(x)$ is a float

From scipy.optimize import brentq
From Ipython type ?brentq for docs or just google "brentq scipy"
Question: $p(x)=\left(x-10^{-16}\right)\left(x+10^{-16}\right)=x^{2}-10^{-32} \approx x^{2}$
Question: how accurate does findroots need to be?
Answer: roots $=$ findroots $(\mathrm{p}, \mathrm{a}, \mathrm{b}$, tol $)($ where tol $>0)$
Def: an open set E in R is a subset of the real line such that if $\mathrm{x} \in E$,then there exists some $\epsilon>0$ such that $B_{\epsilon}=\xi y \in R:|x-y|<\epsilon$
Def: a set $\mathrm{F} \subseteq R$ is closed if it's complement is open.
$F^{c}=\{\mathrm{y}=\mathrm{R}: \mathrm{y} \notin F\}$
e.g. Is the set $[1, \infty)$ closed?
well $[1, \infty)^{c}=(-\infty, 1)$...open
$\Rightarrow[1, \infty)$ is closed.
Note: For the contraction mapping theorem, the assumption on the interval $[\mathrm{a}, \mathrm{b}]$ is that it is closed AND bounded or compact

3 Iterative Solution of Equations

(or in 1D . . . "rootfinding".)
We want to solve $f(x)=0$ for $f: R \rightarrow R$.
Let's just assume $\mathrm{f} \in \mathrm{C}^{0}([a, b])$ (this is closed and bounded)
Picture:

Last class: IVT (Intermediate Value Theorem)
$f \in C^{0}([a, b]), f(a)<0, f(b)>0$, then $\exists x \in E$ such that $\mathrm{f}(\mathrm{x})=0$.
Def: signum e.g. np.sign,

- $\operatorname{sgn}(\mathrm{x})=1$ if $x>0$
- $\operatorname{sgn}(x)=0$ if $x=0$
- $\operatorname{sgn}(x)=-1$ if $x<0$

3.1 Bisection

$a_{0}, b_{0}=a, b$
$\mathrm{k}=0$
while True:
sign_left $=\mathrm{np} \cdot \operatorname{sign}\left(a_{k}\right)$
$\operatorname{sign} _\operatorname{mid}=\mathrm{np} \cdot \operatorname{sign}\left(\frac{a_{k}+b_{k}}{2}\right)$
sign_right $=\mathrm{np} \cdot \operatorname{sign}\left(b_{k}\right)$
\#check if any of the signs $==0$
if sign_left ! = sign_mid:
$a_{k+1}, b_{k+1}=a_{k}, \frac{a_{k}+b_{k}}{2}$
continue
sign_mid $!=$ sign_right:
$a_{k+1}, b_{k+1}=\frac{a_{k}+b_{k}}{2}, b_{k}$ continue

3.2 Time Complexity (How fast is this?)

$\frac{\left|b_{k+1}-a_{k+1}\right|}{\mid b_{k}-a_{k}}=\frac{1}{2} \Rightarrow\left|b_{k}-a_{k}\right|=\frac{b-a}{2^{k}}$
Accuracy:
for rootfinding (solving $f(x)=0$) there are 2 options:

1. $x-x_{k}$
2. $f(x)-f\left(x_{k}\right)$ ('residual')

Question: how many steps to get $\left|x-x_{k}\right|<\epsilon$?
\Leftrightarrow how big does k need to be to get $\left|b_{k}-a_{k}\right|<\epsilon$
$\epsilon=-\mathrm{b}_{k}-a_{k}\left|=\frac{|b-a|}{2^{k}} \Rightarrow 2^{k} \epsilon=|b-a|\right.$
$\Rightarrow \log \epsilon+k \log 2=\log |b-a|$
$\mathrm{k}=\frac{\log \frac{1}{\epsilon}+\log |b-a|}{\log _{2}}=\log _{2} \frac{1}{\epsilon}+\log _{2}|b-a|$
$\mathrm{k}=0\left(\log \frac{1}{\epsilon}\right)$
$\frac{\log 10^{10}}{\log 2} \approx 33$
What should we assume about f ?

1) Completely problem dependent
2) Easy Rootfinding problem

- Exercise: 1) how to solve $\mathrm{p}(\mathrm{x})=0$, if $\mathrm{p}(\mathrm{x})=a x^{2}+b x+c$
- Answer: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Let's say $\mathrm{f}(\mathrm{x})=\mathrm{p}(\mathrm{x})+\epsilon(\mathrm{x})$
What can we say about solving $\mathrm{f}(\mathrm{x})=0$?
Professor's point: if $\epsilon(\mathrm{x})$ is small . . . then no need for bisection algorithm . . . just use the quadratic formula.

3.3 Hard rootfinding problem

Also look at Weierstrass Monster function and the solution of a stochastic dif-
ferential equation ('stock price graph')
e.g. This is a polynomial graph:

Then: Sturm's theorem gives us global information to guide our search . . .
How do we make bisection go faster . . . assuming we have a reasonable problem to solve?

Exercise: what is $\mathrm{l}(\mathrm{x}) ? / /$ Secant method:// $x_{0}=a$
$x_{1}=b$
$k=2$
while true:
$x_{k}=x_{k-1}-f_{k}\left(\frac{x_{k}-x_{k-1}}{f_{k}-f_{k-1}}\right)$
\# check if $\left|x_{k+1}-x_{k}\right|<t o l$
Question: time complexity?

- rate of convergence
- orders of convergence

Landau notation: big O notation . . .
Def: $\mathrm{f}(\mathrm{x})=\mathrm{O}(\mathrm{g}(\mathrm{x}))[$ as $\mathrm{x} \rightarrow x]$
if $: \lim _{x_{0}} \frac{|f(x)|}{|g(x)|}=0$

Some examples:

Def: let $\mathrm{f}: R \rightarrow R$ be a C^{∞} (infinitely differentiable function) in a ball surrounding a point $a \in R$. Then there exists a polynomial (called the Taylor polynomial of order k).
$p_{k}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{(3)}}{3!}(x-a)^{3}+\ldots+\frac{f^{(k)}}{k!}(x-a)^{k}$ $=\sum_{m=0}^{k} \frac{f^{(m)}}{m!}(x-a)^{m}$
Such that: the remainder

$$
R_{k}(x)=f(x)-p_{k}(x)=O\left(|x-a|^{k}\right) \quad \text { as } \mathrm{x} \rightarrow a
$$

More useful forms of Taylor Expansions (TEs) for our purposes:
$\mathrm{f}(\mathrm{x}+\mathrm{h})=\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{h}+\mathrm{f}^{\prime \prime}(\mathrm{x}) \frac{h^{2}}{2}+O\left(h^{3}\right)\left[\right.$ or $\left.o\left(h^{2}\right)\right]$

- $O\left(h^{3}\right)$ is for bookkeeping to keep track of leftover error
$\mathrm{O}=\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}-\mathrm{h}+\mathrm{h})$
- $\mathrm{x}-\mathrm{h}$ is the base point TE
linearizing f about $\mathrm{x}-\mathrm{h}=\mathrm{f}(\mathrm{x}-\mathrm{h})+\mathrm{f}^{\prime}(\mathrm{x}-\mathrm{h}) \mathrm{h}+\mathrm{O}\left(h^{2}\right)$
Relabel: $x_{k}=x-h$
$x_{k}+1-x_{k}=x-x+h-h$
- $\triangle \mathrm{x}_{k}$ is used as 'the step'
$\mathrm{O}=\mathrm{f}\left(x_{k}\right)+\mathrm{f}^{\prime}\left(x_{k}\right)\left(x_{k+1}-x_{k}+\left(x_{k+1}-x_{k}\right)^{2}+\mathrm{O}-x_{k+1}-\left.x_{k}\right|^{2}\right.$
Rearrange:
$x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}+O\left|x_{k+1}-x_{k}\right|^{2}$

1. Started with the thing we are solving
2. Taylor expanded it in a sensible way
3. Converted it into an iteration
4. Therefore we Taylor Expanded, we have an estimate of the error (more or less).

Exercise: In the derivation of Newton's method what happens if $\mathrm{f}^{\prime}\left(x_{k}\right) \sim \mathrm{x}_{k+1}-$ x_{k}

