Convergence of Secant/Newton's Method in 1D

Mei Shin Lee

February 2nd, 2022

1 Minimizing a Function using Newton's Method

For solving equations f(x) = 0 we iterated using

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Let's say we want to solve

$$x^* = \underset{a \le x \le b}{\arg\min} f(x)$$

If f is C'([a, b]) (continuous, differentiable on (a, b)) and its derivative f' is continuous, then a "first order necessary condition for optimality" is $f'(x^*) = 0$ In detail,

- "first order": Look at f'
- "necessary condition": Must be the interior point minimum. While this statement may be true, it doesn't always imply that it is a minimum.
- "optimality": minimum

A second order sufficient condition for minimization would be $f''(x^*) > 0$. Lastly, to determine the behavior of the x^* at the endpoints, we will use Lagrange Multipliers.

What if we apply Newton's Method to the 1st order necessary condition? Set g(x) = f'(x).

$$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)} = x_n - \frac{f'(x_n)}{f^*(x_n)}$$

What happens if $f(x) = ax^2 + bx + c$?

$$x_0 = x... \text{ (doesn't matter)}$$
$$f'(x) = 2ax + b$$
$$f''(x) = 2a$$
$$x_1 = x_0 - \frac{2ax + b}{2a} = \frac{-b}{2a}$$

Now if $\frac{-b}{2a}$ is substituted into f'(x), observe that

$$f'(\frac{-b}{2a}) = 2a(\frac{-b}{2a}) + b = 0$$

It converges in one step.

Exercise: Show that minimizing a function $f : \mathbb{R} \to \mathbb{R}$ using Newton's method is equivalent to minimizing a sequence of quadratics.

Hint: Do a k = 2 Taylor Expansion of $f(x_n + \Delta x_n)$ about x_n where $\Delta x_n = x_{n+1} - x_n$

Bonus Exercise: Apply the above exercise to the Secant Method.

2 Convergence of the Secant Method

Recall the Secant Method, where we solve for f(x) = 0

Now, find t such that l(t) = 0

$$t = -f_0 \cdot \frac{x_1 - x_0}{f_1 - f_0}$$
$$x_2 - x_1 = -f_0 \cdot \frac{x_1 - x_0}{f_1 - f_0}$$
$$x_2 = x_1 - f_0 \cdot \frac{x_1 - x_0}{f_1 - f_0}$$
$$x_{n+1} = x_n - f_n \cdot \frac{x_n - x_{n-1}}{f_n - f_{n-1}}$$

The derived equation: $x_{n+1} = x_n - f_n \cdot \frac{x_n - x_{n-1}}{f_n - f_{n-1}}$ is the secant iteration.

How do we address the question of how fast a sequence approach its limit?

Definition: Let $\xi = \lim_{x\to\infty} x_n$. Then we say that $x_n \to \xi$ with order q > 1 if the sequence $\varepsilon_n = |\xi - x_n|$ (difference of current iterate and target) converges to 0 and there exists some $\mu \in (0, 1)$ such that

$$\lim_{x \to \infty} \frac{\varepsilon_{n+1}}{\varepsilon_n^q} = \mu$$

If q = 1, we say that it converges linearly. If q = 2, it converges quadratically. Newton's method converges with order 2.

Theorem: If the secant method converges, then it converges with the rate $q = \frac{1+\sqrt{5}}{2}$. *Proof:* Assume $x_n \to \xi$ and $\varepsilon_n = x_n - \xi$ We have the secant iteration

$$x_{n+1} = x_n - f_n \cdot \frac{x_n - x_{n-1}}{f_n - f_{n-1}}$$

Subtract ξ from both sides:

$$\varepsilon_{n+1} = \varepsilon_n - f_n \cdot \frac{x_n - x_{n-1}}{f_n - f_{n-1}}$$
$$= \varepsilon_n - f_n \cdot \frac{\varepsilon_n - \varepsilon_{n-1}}{f_n - f_{n-1}}$$
$$= \frac{\varepsilon_n (f_n - f_{n-1}) - f_n (\varepsilon_n - \varepsilon_{n-1})}{f_n - f_{n-1}}$$
$$= \frac{f_n \varepsilon_{n-1} - \varepsilon_n f_{n-1}}{f_n - f_{n-1}}$$

Remember: $x_n = \varepsilon_n + \xi$ and f_n is just notation for $f(x_n)$. So we Taylor expand about ξ .

$$f_n = f(x_n) = f(\varepsilon + \xi)$$

= $f(\xi) + \varepsilon_n f'(\xi) + \varepsilon_{\frac{n}{2}}^2 f''(\xi) + O(\varepsilon_n^3)$
= $0 + \varepsilon_n f'(\xi) + \varepsilon_{\frac{n}{2}}^2 f''(\xi) + O(\varepsilon_n^3)$

Write $f^{(p)}(\xi) = f_*^{(p)}$. (So, $f(\xi) = f_*, f'(\xi) = f'_*...$, etc.) Taylor expand f_n (done above) and f_{n-1} about ξ to get:

$$f_{n} = \varepsilon_{n} f'_{*} + \frac{\varepsilon_{n}^{2}}{2} f''_{*} + O(\varepsilon_{n}^{3})$$
$$f_{n-1} = \varepsilon_{n-1} f'_{*} + \frac{\varepsilon_{n-1}^{2}}{2} f''_{*} + O(\varepsilon_{n-1}^{3})$$

Now substitute: $f'_* = f'(\xi)$

$$\begin{split} \varepsilon_{n+1} &= \frac{\left[(\varepsilon_n f'_* + \frac{\varepsilon_n^2}{2} f''_* + O(\varepsilon_n^3)) \varepsilon_{n-1} - (\varepsilon_{n-1} f'_* + \frac{\varepsilon_{n-1}^2}{2} f''_* + O(\varepsilon_{n-1}^3)) \varepsilon_n \right]}{\varepsilon_n f'_* + \frac{\varepsilon_n^2}{2} f''_* + O(\varepsilon_n^3) - \varepsilon_{n-1} f''_* - \frac{\varepsilon_{n-1}^2}{2} f''_* + O(\varepsilon_{n-1}^3)} \\ &= \frac{\varepsilon_n \varepsilon_{n-1} [\frac{\varepsilon_n - \varepsilon_{n-1}}{2} f''_* + O(\varepsilon_n^2) + O(\varepsilon_{n-1}^2)]}{(\varepsilon_n - \varepsilon_{n-1}) f'_* + O(\varepsilon_n^2) + O(\varepsilon_{n-1}^2)} \\ &\lim_{n \to \infty} \frac{\varepsilon_{n+1}}{\varepsilon_n \varepsilon_{n-1}} = \lim_{n \to \infty} \frac{[\frac{\varepsilon_n \varepsilon_{n-1}}{2} f''_* + O(\varepsilon_n^2)]}{[(\varepsilon_n \varepsilon_{n-1}) f'_* + O(\varepsilon_n^2)]} \\ &= \frac{f''_*}{2f'_*} \end{split}$$

We need to find a constant $\mu > 0$ such that $\frac{\varepsilon_{n+1}}{\varepsilon_n^2} \to \mu$ as $n \to \infty$ Let's just say that $\varepsilon_{n+1} = C \varepsilon_n^q$

$$\frac{\varepsilon_{n+1}}{\varepsilon_n\varepsilon_{n-1}} = \frac{C\varepsilon_n^q}{\varepsilon_n\varepsilon_{n-1}}$$
$$= \frac{C[C\varepsilon_{n-1}^q]^q}{C\varepsilon_{n-1}^q\varepsilon_{n-1}}$$
$$= \frac{C \cdot C^q \cdot q_{n-1}^{q^2}}{C\varepsilon_{n-1}^{q+1}}$$
$$= C^q \varepsilon_{n-1}^{q^2-q-1}$$
$$\lim_{n \to \infty} \frac{\varepsilon_{n+1}}{\varepsilon_n\varepsilon_{n-1}} = \lim_{n \to \infty} C^q \varepsilon_{n-1}^{q^2-q-1}$$

Now we pick q such that $q^2 - q - 1 = 0$

$$q = \frac{1 \pm \sqrt{1+4}}{2} = \frac{1 \pm \sqrt{5}}{2} < 0$$

Choose

$$q = \frac{1 + \sqrt{5}}{2}$$

This argument shows that if the Secant Method converges, it does so with order $q = \frac{1+\sqrt{5}}{2}$.

3 A Common Pattern with Taylor Expansions

- 1. Do two similar Taylor Expansions
- 2. Look for cancellations with every other power

Example:

$$F(x+h) = F(x) + hF'(x) + \frac{h^2}{2}F''(x) + O(h^3)$$
$$F(x-h) = F(x) - hF'(x) + \frac{h^2}{2}F''(x) + O(h^3)$$
$$F(x+h) - F(x-h) = 2hF'(x) + O(h^3)$$

Rearrange:

$$F'(x) = \frac{F(x+h) - F(x-h)}{2h} + O(h^2)$$

The result looks similar to $F'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$. This is called a *finite difference* approximation.

4 Taylor Expansion Remainders

Another form is the so-called Lagrange form of the remainder. It looks like:

$$f(x+h) = \sum_{m=0}^{k} \frac{f^{(m)}}{m!} h^m + \frac{f^{(m+1)}\eta}{(m+1)!} h^{m+1}, \eta \in [0,h]$$

$$f(x) = f(x_0) + f'(x_0)(x-x_0) + \dots + \frac{f^{(m)}x_0}{m!}(x-x_0)^m + \frac{f^{(m+1)}\eta}{(m+1)!}(x-x_0)^{m+1}, \eta \in [x,x_0]$$

$$0 = f(\xi) = f(x_n + \xi - x_n)$$

$$= f(x_n) + f'(x_n)(\xi - x_n) + \frac{f''(\eta)}{2}(\xi - x_n)^2$$

Rearrange and apply the Newton step to get:

$$\xi - x_{n+1} = -\frac{(\xi - x_n)^2}{2} \cdot \frac{f''(\eta)}{f'(x_n)}$$
$$\lim_{n \to \infty} \frac{\varepsilon_{n+1}}{\varepsilon_n^2} = \frac{-1}{2} \cdot \frac{f''(\xi)}{f'(\xi)}$$
$$\to q = 2 \text{ for Newton}$$

5 Theorem for the Homework Problem (Q2)

Note: This ended up not being given for Written Homework #1 as per Professor Potter's email.

Theorem: Let $f \in C^2$ on $I_{\delta} = [\xi - \delta, \xi + \delta], \delta > 0$. Assume that $f(\xi) = 0$ and $f''(\xi) \neq 0$. Assume that $\exists A > 0$ such that $\frac{|f''(x)|}{|f'(y)|} \leq A$ for all $x, y \in I_{\delta}$. If x_0 is such that $|\xi - x_0| \leq \min(\delta, \frac{1}{A})$, then $x_n \to \xi$ quadratically.

Exercise (HW): Let f(x) = sin(x), so sin(0) = 0.

Apply this theorem to show that if $x_0 \in (\frac{-\pi}{2} + a, \frac{\pi}{2} - a)$, where $a \ge 0$ and $x_0 \ne 0, x_n \rightarrow 0$ quadratically.

Note: Do you have to assume anything about a?