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1 Minimizing a Function using Newton’s Method

For solving equations f(x) = 0 we iterated using
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Let’s say we want to solve
" = argminf(x)
a<z<b
If fis C'(Ja,b]) (continuous, differentiable on (a,b)) and its derivative f’ is continuous,
then a "first order necessary condition for optimality” is f'(z*) =0
In detail,

e "first order”: Look at f’

e "necessary condition”: Must be the interior point minimum. While this statement
may be true, it doesn’t always imply that it is a minimum.

e "optimality”: minimum

A second order sufficient condition for minimization would be f”(z*) > 0.
Lastly, to determine the behavior of the x* at the endpoints, we will use Lagrange Mul-
tipliers.

What if we apply Newton’s Method to the 1st order necessary condition?
Set g(x) = f'(x).
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What happens if f(z) = ax? + bx + ¢?

xog = z... (doesn’t matter)
f(x) =2ax+0b
f"(x) =2a
2z +b0 =D
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Now if 52 is substituted into f’(z), observe that
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It converges in one step.
Exercise: Show that minimizing a function f : R — R using Newton’s method is equiv-
alent to minimizing a sequence of quadratics.

Hint: Do a k = 2 Taylor Expansion of f(z, + Ax,) about x,, where Az, =z, — x,

Bonus Exercise: Apply the above exercise to the Secant Method.

2 Convergence of the Secant Method

Recall the Secant Method, where we solve for f(x) =0
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Now, find ¢ such that I(t) =0
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The derived equation: z,,1 =z, — f, - is the secant iteration.
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How do we address the question of how fast a sequence approach its limit?

Definition: Let ¢ = lim, . z,. Then we say that x, — & with order ¢ > 1 if the
sequence &, = |{ — x,| (difference of current iterate and target) converges to 0 and there
exists some p € (0, 1) such that
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If ¢ = 1, we say that it converges linearly. If ¢ = 2, it converges quadratically. Newton’s
method converges with order 2.

1+
2

=

Theorem: If the secant method converges, then it converges with the rate ¢ =
Proof: Assume z, — & and ¢, =z, — £
We have the secant iteration
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Remember: z,, = ¢, + & and f, is just notation for f(x,). So we Taylor expand about &.

fn:f<xn> :f(€+€>
= f(&) +enf'(€) +11"(6) + O(E)
=0+enf' (&) +eRf"(€) + Ofe))
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Write f)(€) = £ (So, f(€) = fu, J'(§) = fluw, ete. )
Taylor expand f,, (done above) and f,,_; about £ to get:
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fn—l = €n—1f>c/< +
Now substitute: f. = f'(&)
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We need to find a constant y > 0 such that =3+ — p as n — oo
Let’s just say that €,41 = Cel
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Now we pick ¢ such that ¢> —¢—1=0
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This argument shows that if the Secant Method converges, it does so with order ¢ =
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3 A Common Pattern with Taylor Expansions

1. Do two similar Taylor Expansions

2. Look for cancellations with every other power

Example:
F(z+h)=F(z)+ hF'(z) + %QF”(x) + O(Rh?)
F(x —h) = F(z) — hF'(z) + %QF"(J:) + O(R?)
F(z+h) — F(x —h) = 2hF'(x) + O(h?)
Rearrange:
F(2) = F(z+ h)2—hF(x —h) +O(h?)

The result looks similar to F'(z) = lim,_ w This is called a finite difference
approximation.

4 Taylor Expansion Remainders

Another form is the so-called Lagrange form of the remainder. It looks like:

(m—+1)
Wy / n
m! (m+1)

T € (0,7

f(m)I f(m+1)7] .
: ——(z —xo)"", € [z, 3]

= f(@n) + f'(zn) (€ — 2,) +
Rearrange and apply the Newton step to get:
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— q = 2 for Newton
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5 Theorem for the Homework Problem (Q2)

Note: This ended up not being given for Written Homework #1 as per Professor Potter’s
email.

Theorem: Let f € C? on Iy = [€ — 6, + 6], > 0. Assume that f(£) = 0 and

f"(€) # 0. Assume that 34 > 0 such that ||J}l,l((;))|| < A for all z,y € I5. If ¢ is such that

€ — 0| < min(é, &), then z,, — £ quadratically.

Exercise (HW): Let f(z) = sin(z), so sin(0) = 0.
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Apply this theorem to show that if 7y € (5* +a, 5 —a), where a > 0 and zy # 0, 7, — 0
quadratically.
Note: Do you have to assume anything about a?



