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1 Minimizing a Function using Newton’s Method

For solving equations f(x) = 0 we iterated using

xn+1 = xn −
f(xn)

f ′(xn)

Let’s say we want to solve
x∗ = argmin

a≤x≤b
f(x)

If f is C ′([a, b]) (continuous, differentiable on (a, b)) and its derivative f ′ is continuous,
then a ”first order necessary condition for optimality” is f ′(x∗) = 0
In detail,

• ”first order”: Look at f ′

• ”necessary condition”: Must be the interior point minimum. While this statement
may be true, it doesn’t always imply that it is a minimum.

• ”optimality”: minimum

A second order sufficient condition for minimization would be f ′′(x∗) > 0.
Lastly, to determine the behavior of the x∗ at the endpoints, we will use Lagrange Mul-
tipliers.

What if we apply Newton’s Method to the 1st order necessary condition?
Set g(x) = f ′(x).

xn+1 = xn −
g(xn)

g′(xn)
= xn −

f ′(xn)

f ∗(xn)

What happens if f(x) = ax2 + bx+ c?

x0 = x... (doesn’t matter)

f ′(x) = 2ax+ b

f ′′(x) = 2a

x1 = x0 −
2ax+ b

2a
=

−b

2a
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Now if −b
2a

is substituted into f ′(x), observe that

f ′(
−b

2a
) = 2a(

−b

2a
) + b = 0

It converges in one step.

Exercise: Show that minimizing a function f : R → R using Newton’s method is equiv-
alent to minimizing a sequence of quadratics.
Hint: Do a k = 2 Taylor Expansion of f(xn +∆xn) about xn where ∆xn = xn+1 − xn

Bonus Exercise: Apply the above exercise to the Secant Method.

2 Convergence of the Secant Method

Recall the Secant Method, where we solve for f(x) = 0

l(t) =
f1 − f0
x1 − x0

(t) + f0

l(0) = f0

l(x1 − x0) =
f1 − f0
x1 − x0

+ f0

= f1 − f0 + f0

= f1
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Now, find t such that l(t) = 0

t = −f0 ·
x1 − x0

f1 − f0

x2 − x1 = −f0 ·
x1 − x0

f1 − f0

x2 = x1 − f0 ·
x1 − x0

f1 − f0

xn+1 = xn − fn ·
xn − xn−1

fn − fn−1

The derived equation: xn+1 = xn − fn · xn−xn−1

fn−fn−1
is the secant iteration.

How do we address the question of how fast a sequence approach its limit?

Definition: Let ξ = limx→∞ xn. Then we say that xn → ξ with order q > 1 if the
sequence εn = |ξ − xn| (difference of current iterate and target) converges to 0 and there
exists some µ ∈ (0, 1) such that

lim
x→∞

εn+1

εqn
= µ

If q = 1, we say that it converges linearly. If q = 2, it converges quadratically. Newton’s
method converges with order 2.

Theorem: If the secant method converges, then it converges with the rate q = 1+
√
5

2
.

Proof: Assume xn → ξ and εn = xn − ξ
We have the secant iteration

xn+1 = xn − fn ·
xn − xn−1

fn − fn−1

Subtract ξ from both sides:

εn+1 = εn − fn ·
xn − xn−1

fn − fn−1

= εn − fn ·
εn − εn−1

fn − fn−1

=
εn(fn − fn−1)− fn(εn − εn−1)

fn − fn−1

=
fnεn−1 − εnfn−1

fn − fn−1

Remember: xn = εn + ξ and fn is just notation for f(xn). So we Taylor expand about ξ.

fn = f(xn) = f(ε+ ξ)

= f(ξ) + εnf
′(ξ) + ε2n

2
f ′′(ξ) +O(ε3n)

= 0 + εnf
′(ξ) + ε2n

2
f ′′(ξ) +O(ε3n)
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Write f (p)(ξ) = f
(p)
∗ . (So, f(ξ) = f∗, f

′(ξ) = f ′
∗..., etc. )

Taylor expand fn (done above) and fn−1 about ξ to get:

fn = εnf
′
∗ +

ε2n
2
f ′′
∗ +O(ε3n)

fn−1 = εn−1f
′
∗ +

ε2n−1

2
f ′′
∗ +O(ε3n−1)

Now substitute: f ′
∗ = f ′(ξ)

εn+1 =
[(εnf

′
∗ +

ε2n
2
f ′′
∗ +O(ε3n))εn−1 − (εn−1f

′
∗ +

ε2n−1

2
f ′′
∗ +O(ε3n−1))εn]

εnf ′
∗ +

ε2n
2
f ′′
∗ +O(ε3n)− εn−1f ′′

∗ − ε2n−1

2
f ′′
∗ +O(ε3n−1)

=
εnεn−1[

εn−εn−1

2
f ′′
∗ +O(ε2n) +O(ε2n−1)]

(εn − εn−1)f ′
∗ +O(ε2n) +O(ε2n−1)

lim
n→∞

εn+1

εnεn−1

= lim
n→∞

[ εnεn−1

2
f ′′
∗ +O(ε2n)]

[(εnεn−1)f ′
∗ +O(ε2n)]

=
f ′′
∗

2f ′
∗

We need to find a constant µ > 0 such that εn+1

ε2n
→ µ as n → ∞

Let’s just say that εn+1 = Cεqn

εn+1

εnεn−1

=
Cεqn

εnεn−1

=
C[Cεqn−1]

q

Cεqn−1εn−1

=
C · Cq · qq

2

n−1

Cεq+1
n−1

= Cqεq
2−q−1

n−1

lim
n→∞

εn+1

εnεn−1

= lim
n→∞

Cqεq
2−q−1

n−1

Now we pick q such that q2 − q − 1 = 0

q =
1±

√
1 + 4

2
=

1±
√
5

2
< 0

Choose

q =
1 +

√
5

2

This argument shows that if the Secant Method converges, it does so with order q = 1+
√
5

2
.
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3 A Common Pattern with Taylor Expansions

1. Do two similar Taylor Expansions

2. Look for cancellations with every other power

Example:

F (x+ h) = F (x) + hF ′(x) +
h2

2
F ′′(x) +O(h3)

F (x− h) = F (x)− hF ′(x) +
h2

2
F ′′(x) +O(h3)

F (x+ h)− F (x− h) = 2hF ′(x) +O(h3)

Rearrange:

F ′(x) =
F (x+ h)− F (x− h)

2h
+O(h2)

The result looks similar to F ′(x) = limh→0
f(x+h)−f(x)

h
. This is called a finite difference

approximation.

4 Taylor Expansion Remainders

Another form is the so-called Lagrange form of the remainder. It looks like:

f(x+ h) =
k∑

m=0

f (m)

m!
hm +

f (m+1)η

(m+ 1)!
hm+1, η ∈ [0, h]

f(x) = f(x0) + f ′(x0)(x− x0) + ...+
f (m)x0

m!
(x− x0)

m +
f (m+1)η

(m+ 1)!
(x− x0)

m+1, η ∈ [x, x0]

0 = f(ξ) = f(xn + ξ − xn)

= f(xn) + f ′(xn)(ξ − xn) +
f ′′(η)

2
(ξ − xn)

2

Rearrange and apply the Newton step to get:

ξ − xn+1 = −(ξ − xn)
2

2
· f ′′(η)

f ′(xn)

lim
n→∞

εn+1

ε2n
=

−1

2
· f

′′(ξ)

f ′(ξ)

→ q = 2 for Newton
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5 Theorem for the Homework Problem (Q2)

Note: This ended up not being given for Written Homework #1 as per Professor Potter’s
email.

Theorem: Let f ∈ C2 on Iδ = [ξ − δ, ξ + δ], δ > 0. Assume that f(ξ) = 0 and

f ′′(ξ) ̸= 0. Assume that ∃A > 0 such that |f ′′(x)|
|f ′(y)| ≤ A for all x, y ∈ Iδ. If x0 is such that

|ξ − x0| ≤ min(δ, 1
A
), then xn → ξ quadratically.

Exercise (HW): Let f(x) = sin(x), so sin(0) = 0.

Apply this theorem to show that if x0 ∈ (−π
2
+ a, π

2
− a), where a ≥ 0 and x0 ̸= 0, xn → 0

quadratically.
Note: Do you have to assume anything about a?
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