Convergence of Secant/Newton's Method in 1D

Mei Shin Lee

February 2nd, 2022

1 Minimizing a Function using Newton's Method

For solving equations $f(x)=0$ we iterated using

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Let's say we want to solve

$$
x^{*}=\underset{a \leq x \leq b}{\arg \min } f(x)
$$

If f is $C^{\prime}([a, b])$ (continuous, differentiable on $\left.(a, b)\right)$ and its derivative f^{\prime} is continuous, then a "first order necessary condition for optimality" is $f^{\prime}\left(x^{*}\right)=0$ In detail,

- "first order": Look at f^{\prime}
- "necessary condition": Must be the interior point minimum. While this statement may be true, it doesn't always imply that it is a minimum.
- "optimality": minimum

A second order sufficient condition for minimization would be $f^{\prime \prime}\left(x^{*}\right)>0$.
Lastly, to determine the behavior of the x^{*} at the endpoints, we will use Lagrange Multipliers.

What if we apply Newton's Method to the 1st order necessary condition?
Set $g(x)=f^{\prime}(x)$.

$$
x_{n+1}=x_{n}-\frac{g\left(x_{n}\right)}{g^{\prime}\left(x_{n}\right)}=x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f^{*}\left(x_{n}\right)}
$$

What happens if $f(x)=a x^{2}+b x+c$?

$$
\begin{aligned}
x_{0} & =x \ldots(\text { doesn't matter }) \\
f^{\prime}(x) & =2 a x+b \\
f^{\prime \prime}(x) & =2 a \\
x_{1} & =x_{0}-\frac{2 a x+b}{2 a}=\frac{-b}{2 a}
\end{aligned}
$$

Now if $\frac{-b}{2 a}$ is substituted into $f^{\prime}(x)$, observe that

$$
f^{\prime}\left(\frac{-b}{2 a}\right)=2 a\left(\frac{-b}{2 a}\right)+b=0
$$

It converges in one step.
Exercise: Show that minimizing a function $f: \mathbb{R} \rightarrow \mathbb{R}$ using Newton's method is equivalent to minimizing a sequence of quadratics.
Hint: Do a $k=2$ Taylor Expansion of $f\left(x_{n}+\Delta x_{n}\right)$ about x_{n} where $\Delta x_{n}=x_{n+1}-x_{n}$
Bonus Exercise: Apply the above exercise to the Secant Method.

2 Convergence of the Secant Method

Recall the Secant Method, where we solve for $f(x)=0$

$$
\begin{aligned}
l(t) & =\frac{f_{1}-f_{0}}{x_{1}-x_{0}}(t)+f_{0} \\
l(0) & =f_{0} \\
l\left(x_{1}-x_{0}\right) & =\frac{f_{1}-f_{0}}{x_{1}-x_{0}}+f_{0} \\
& =f_{1}-f_{0}+f_{0} \\
& =f_{1}
\end{aligned}
$$

Now, find t such that $l(t)=0$

$$
\begin{array}{r}
t=-f_{0} \cdot \frac{x_{1}-x_{0}}{f_{1}-f_{0}} \\
x_{2}-x_{1}=-f_{0} \cdot \frac{x_{1}-x_{0}}{f_{1}-f_{0}} \\
x_{2}=x_{1}-f_{0} \cdot \frac{x_{1}-x_{0}}{f_{1}-f_{0}} \\
x_{n+1}=x_{n}-f_{n} \cdot \frac{x_{n}-x_{n-1}}{f_{n}-f_{n-1}}
\end{array}
$$

The derived equation: $x_{n+1}=x_{n}-f_{n} \cdot \frac{x_{n}-x_{n-1}}{f_{n}-f_{n-1}}$ is the secant iteration.
How do we address the question of how fast a sequence approach its limit?
Definition: Let $\xi=\lim _{x \rightarrow \infty} x_{n}$. Then we say that $x_{n} \rightarrow \xi$ with order $q>1$ if the sequence $\varepsilon_{n}=\left|\xi-x_{n}\right|$ (difference of current iterate and target) converges to 0 and there exists some $\mu \in(0,1)$ such that

$$
\lim _{x \rightarrow \infty} \frac{\varepsilon_{n+1}}{\varepsilon_{n}^{q}}=\mu
$$

If $q=1$, we say that it converges linearly. If $q=2$, it converges quadratically. Newton's method converges with order 2 .

Theorem: If the secant method converges, then it converges with the rate $q=\frac{1+\sqrt{5}}{2}$. Proof: Assume $x_{n} \rightarrow \xi$ and $\varepsilon_{n}=x_{n}-\xi$
We have the secant iteration

$$
x_{n+1}=x_{n}-f_{n} \cdot \frac{x_{n}-x_{n-1}}{f_{n}-f_{n-1}}
$$

Subtract ξ from both sides:

$$
\begin{aligned}
\varepsilon_{n+1} & =\varepsilon_{n}-f_{n} \cdot \frac{x_{n}-x_{n-1}}{f_{n}-f_{n-1}} \\
& =\varepsilon_{n}-f_{n} \cdot \frac{\varepsilon_{n}-\varepsilon_{n-1}}{f_{n}-f_{n-1}} \\
& =\frac{\varepsilon_{n}\left(f_{n}-f_{n-1}\right)-f_{n}\left(\varepsilon_{n}-\varepsilon_{n-1}\right)}{f_{n}-f_{n-1}} \\
& =\frac{f_{n} \varepsilon_{n-1}-\varepsilon_{n} f_{n-1}}{f_{n}-f_{n-1}}
\end{aligned}
$$

Remember: $x_{n}=\varepsilon_{n}+\xi$ and f_{n} is just notation for $f\left(x_{n}\right)$. So we Taylor expand about ξ.

$$
\begin{aligned}
f_{n} & =f\left(x_{n}\right)=f(\varepsilon+\xi) \\
& =f(\xi)+\varepsilon_{n} f^{\prime}(\xi)+\varepsilon_{\frac{n}{2}}^{2} f^{\prime \prime}(\xi)+O\left(\varepsilon_{n}^{3}\right) \\
& =0+\varepsilon_{n} f^{\prime}(\xi)+\varepsilon_{\frac{n}{2}}^{2} f^{\prime \prime}(\xi)+O\left(\varepsilon_{n}^{3}\right)
\end{aligned}
$$

Write $f^{(p)}(\xi)=f_{*}^{(p)}$. (So, $f(\xi)=f_{*}, f^{\prime}(\xi)=f_{*}^{\prime} \ldots$, etc.)
Taylor expand f_{n} (done above) and f_{n-1} about ξ to get:

$$
\begin{aligned}
f_{n} & =\varepsilon_{n} f_{*}^{\prime}+\frac{\varepsilon_{n}^{2}}{2} f_{*}^{\prime \prime}+O\left(\varepsilon_{n}^{3}\right) \\
f_{n-1} & =\varepsilon_{n-1} f_{*}^{\prime}+\frac{\varepsilon_{n-1}^{2}}{2} f_{*}^{\prime \prime}+O\left(\varepsilon_{n-1}^{3}\right)
\end{aligned}
$$

Now substitute: $f_{*}^{\prime}=f^{\prime}(\xi)$

$$
\begin{aligned}
\varepsilon_{n+1} & =\frac{\left[\left(\varepsilon_{n} f_{*}^{\prime}+\frac{\varepsilon_{n}^{2}}{2} f_{*}^{\prime \prime}+O\left(\varepsilon_{n}^{3}\right)\right) \varepsilon_{n-1}-\left(\varepsilon_{n-1} f_{*}^{\prime}+\frac{\varepsilon_{n-1}^{2}}{2} f_{*}^{\prime \prime}+O\left(\varepsilon_{n-1}^{3}\right)\right) \varepsilon_{n}\right]}{\varepsilon_{n} f_{*}^{\prime}+\frac{\varepsilon_{n}^{2}}{2} f_{*}^{\prime \prime}+O\left(\varepsilon_{n}^{3}\right)-\varepsilon_{n-1} f_{*}^{\prime \prime}-\frac{\varepsilon_{n-1}^{2}}{2} f_{*}^{\prime \prime}+O\left(\varepsilon_{n-1}^{3}\right)} \\
& =\frac{\varepsilon_{n} \varepsilon_{n-1}\left[\frac{\varepsilon_{n}-\varepsilon_{n-1}}{2} f_{*}^{\prime \prime}+O\left(\varepsilon_{n}^{2}\right)+O\left(\varepsilon_{n-1}^{2}\right)\right]}{\left(\varepsilon_{n}-\varepsilon_{n-1}\right) f_{*}^{\prime}+O\left(\varepsilon_{n}^{2}\right)+O\left(\varepsilon_{n-1}^{2}\right)} \\
\lim _{n \rightarrow \infty} \frac{\varepsilon_{n+1}}{\varepsilon_{n} \varepsilon_{n-1}} & =\lim _{n \rightarrow \infty} \frac{\left[\frac{\varepsilon_{n} \varepsilon_{n-1}}{2} f_{*}^{\prime \prime}+O\left(\varepsilon_{n}^{2}\right)\right]}{\left[\left(\varepsilon_{n} \varepsilon_{n-1}\right) f_{*}^{\prime}+O\left(\varepsilon_{n}^{2}\right)\right]} \\
& =\frac{f_{*}^{\prime \prime}}{2 f_{*}^{\prime}}
\end{aligned}
$$

We need to find a constant $\mu>0$ such that $\frac{\varepsilon_{n+1}}{\varepsilon_{n}^{2}} \rightarrow \mu$ as $n \rightarrow \infty$
Let's just say that $\varepsilon_{n+1}=C \varepsilon_{n}^{q}$

$$
\begin{aligned}
\frac{\varepsilon_{n+1}}{\varepsilon_{n} \varepsilon_{n-1}} & =\frac{C \varepsilon_{n}^{q}}{\varepsilon_{n} \varepsilon_{n-1}} \\
& =\frac{C\left[C \varepsilon_{n-1}^{q}\right]^{q}}{C \varepsilon_{n-1}^{q} \varepsilon_{n-1}} \\
& =\frac{C \cdot C^{q} \cdot q_{n-1}^{q^{2}}}{C \varepsilon_{n-1}^{q+1}} \\
& =C^{q} \varepsilon_{n-1}^{q^{2}-q-1} \\
\lim _{n \rightarrow \infty} \frac{\varepsilon_{n+1}}{\varepsilon_{n} \varepsilon_{n-1}} & =\lim _{n \rightarrow \infty} C^{q} \varepsilon_{n-1}^{q^{2}-q-1}
\end{aligned}
$$

Now we pick q such that $q^{2}-q-1=0$

$$
q=\frac{1 \pm \sqrt{1+4}}{2}=\frac{1 \pm \sqrt{5}}{2}<0
$$

Choose

$$
q=\frac{1+\sqrt{5}}{2}
$$

This argument shows that if the Secant Method converges, it does so with order $q=\frac{1+\sqrt{5}}{2}$.

3 A Common Pattern with Taylor Expansions

1. Do two similar Taylor Expansions
2. Look for cancellations with every other power

Example:

$$
\begin{aligned}
F(x+h) & =F(x)+h F^{\prime}(x)+\frac{h^{2}}{2} F^{\prime \prime}(x)+O\left(h^{3}\right) \\
F(x-h) & =F(x)-h F^{\prime}(x)+\frac{h^{2}}{2} F^{\prime \prime}(x)+O\left(h^{3}\right) \\
F(x+h)-F(x-h) & =2 h F^{\prime}(x)+O\left(h^{3}\right)
\end{aligned}
$$

Rearrange:

$$
F^{\prime}(x)=\frac{F(x+h)-F(x-h)}{2 h}+O\left(h^{2}\right)
$$

The result looks similar to $F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$. This is called a finite difference approximation.

4 Taylor Expansion Remainders

Another form is the so-called Lagrange form of the remainder. It looks like:

$$
\begin{gathered}
f(x+h)=\sum_{m=0}^{k} \frac{f^{(m)}}{m!} h^{m}+\frac{f^{(m+1)} \eta}{(m+1)!} h^{m+1}, \eta \in[0, h] \\
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\ldots+\frac{f^{(m)} x_{0}}{m!}\left(x-x_{0}\right)^{m}+\frac{f^{(m+1)} \eta}{(m+1)!}\left(x-x_{0}\right)^{m+1}, \eta \in\left[x, x_{0}\right] \\
0=f(\xi)=f\left(x_{n}+\xi-x_{n}\right) \\
=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(\xi-x_{n}\right)+\frac{f^{\prime \prime}(\eta)}{2}\left(\xi-x_{n}\right)^{2}
\end{gathered}
$$

Rearrange and apply the Newton step to get:

$$
\begin{aligned}
\xi-x_{n+1} & =-\frac{\left(\xi-x_{n}\right)^{2}}{2} \cdot \frac{f^{\prime \prime}(\eta)}{f^{\prime}\left(x_{n}\right)} \\
\lim _{n \rightarrow \infty} \frac{\varepsilon_{n+1}}{\varepsilon_{n}^{2}} & =\frac{-1}{2} \cdot \frac{f^{\prime \prime}(\xi)}{f^{\prime}(\xi)} \\
\rightarrow q & =2 \text { for Newton }
\end{aligned}
$$

5 Theorem for the Homework Problem (Q2)

Note: This ended up not being given for Written Homework \#1 as per Professor Potter's email.

Theorem: Let $f \in C^{2}$ on $I_{\delta}=[\xi-\delta, \xi+\delta], \delta>0$. Assume that $f(\xi)=0$ and $f^{\prime \prime}(\xi) \neq 0$. Assume that $\exists A>0$ such that $\frac{\left|f^{\prime \prime}(x)\right|}{\left|f^{\prime}(y)\right|} \leq A$ for all $x, y \in I_{\delta}$. If x_{0} is such that $\left|\xi-x_{0}\right| \leq \min \left(\delta, \frac{1}{A}\right)$, then $x_{n} \rightarrow \xi$ quadratically.

Exercise (HW): Let $f(x)=\sin (x)$, so $\sin (0)=0$.

Apply this theorem to show that if $x_{0} \in\left(\frac{-\pi}{2}+a, \frac{\pi}{2}-a\right)$, where $a \geq 0$ and $x_{0} \neq 0, x_{n} \rightarrow 0$ quadratically.
Note: Do you have to assume anything about a ?

