
Lecture 5: Sources of Error

Nigel Shen cs5897@nyu.edu

February 2022

1 Written Homework 1 Hint

The problem we want to solve is the convergence of f(y) = 1
2 (

x
y + y).

Our goal is to:

1 Fix y0 > 0

2 If y0 <
√
x, check the region where y1 falls in, and choose [a, b] wisely so

that the Contract Mapping Theorem can be applied.

2 Four Major sources of error

1. Truncation error
2. Termination error
3. Statistical error
4. Round off error (Not covered in this lecture)

3 Truncation Error

Let’s compute a finite difference approximation to the derivative:

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)h2

2
+O(h3)

Subtract f(x) from both sides, divide by h, and rearrange, we get:

f ′(x) =
f(x+ h)− f(x)

h
+

f ′′(x)h

2
+O(h2)

If we truncate and approximate f ′(x) with the k = 1 Taylor polynomial, we get:

f ′(x) ≈ f(x+ h)− f(x)

h

with truncation error:
f ′′(x)h

2
+O(h2)

1

This particular finite difference approximation is called a forward difference.

Exercise: With x = π
2 , approximate d

dxsin(x) at x+h where h = 0.1, 0.01, 0.001,

What trend do you observe? Can you relate it to the values of f ′′(x)
2 ?

Def : The error in an approximation like this can be written as Chp+O(hp+1),
then the approximation is pth order accurate.

Thus, we find that f(x) ≈ f(x+h)−f(x)
h is first-order accurate. If we did a

least square fit of the errors, we would expect them to match Ch1.

Now, in order to increase the accuracy, let’s take the Taylor expansion with
one more term:

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)
h2

2
+ f (3)(x)

h3

6
+O(h4)

f(x− h) = f(x)− f ′(x)h+ f ′′(x)
h2

2
− f (3)(x)

h3

6
+O(h4)

Subtract them, we get:

f(x+ h)− f(x− h) = 2f ′(x)h+
f (3)(x)

3
h3 +O(h4)

Rearrange terms, we get:

f ′(x) =
f(x+ h)− f(x− h)

2h
− f (3)(x)

6
h2 +O(h3)

This is called a central difference. It is second-order accurate.

Exercise:
1. What happens if f (3)(x) = 0?
2. p(x) = ax2 + bx + c. Show that the central difference scheme is “exact”:
That there is no error.

4 Termination Error

We saw two different kinds of iterative schemes in previous lectures:

* xn+1 = f(xn), which solves f(x) = x to find the fixed points;

* xn+1 = xn − f(xn)
f ′(xn)

which solves f(x) = 0 (Newton’s equation solving

root-finding)

2

Exercise: The Secant method makes a linear approximation from xn,xn−1,f(xn),f(xn−1)
at each step and finds that line’s intersection with the x-axis to compute xn+1.
Newton’s method uses fn and f ′

n. Write down a method similar to the se-
cant method which makes a quadratic approximation using xn, xn−1, xn−2 and
fn, fn−1fn−2 and finds its intersection with the x-axis at each step.

Let’s denote en = xn − x where x is the solution. This is the absolute error at
each step. The method converges with order q accuracy if

lim
n→∞

en+1

eqn
= µ ∈ (0, 1)

Note: en is as hard to compute as xn. We don’t know x. If we know en and
xn well, then we can find x = xn + en and we are done. We can instead look at
xn+1 − xn, which tells us if xn converges.

5 Statistical Error

We’ll see later in the class methods for approximating integrals (“numerical
quadrature”). The idea comes from the derivation of Riemann integral:∫ b

a

f(x)dx ≈
n∑

i=1

wif(xi)

Mid-point Estimation: If the interval [a, b] is not big, we might want to use

Mid-point estimation:
∫ b

a
f(x)dx ≈ f(a+b

2)(b− a)

Exercise: Derive an error estimate for the midpoint rule applied to
∫ b

a
f(x)dx

3

assuming b− a = O(h), h > 0 and using a Taylor expansion.

For integrating multidimensional functions we can use tensor product quadra-
ture: ∫ b1

a1

∫ b0

a0

f(x, y)dxdy ≈
m∑
i=1

n∑
j=1

wijf(xi, yj)

Let’s say we want to integrate a d-dimensional function using a 1D n-points
quadrature rule, then the time complexity is O(nd). Therefore, instead people
use Monte-Carlo methods.

Monte-Carlo Method: The idea is to generate a sequence of random ap-
proximations xn approximating x. The error will frequency decay like O(1√

n
)

independent of dimension.

Example: Approximating π

The idea is to make a dartboard:

Let (xn, yn) be the position of the nth dart throw, where xn, yn ∼ Uniform([0, 1])
and xn, yn are independent variables, so that our throws are independently and
identically distributed.
After each throw we check whether it is in the shaded region:

hn =
{1 x2

n+y2
n≤1

0 otherwise

4

We expect that ∑n
i=1 hi

n
→ π

4

Let p = π
4 and pn = hn

n . We then have

E[pn − p] = E[pn]− E[p]

= E[pn]− p = E
[∑n

i=1 hi

n

]
− p

=

∑n
i=1 E[hi]

n
− p = E[h1]− p

= p− p = 0

Thus, pn is an unbiased estimate. We then check the convergence rate of the
sequence:

V ar(pn − p) = V ar(pn)− V ar(p)

= V ar(pn)− 0 =

∑n
i=1 V ar(hi)

n2

=
V ar(h1)

n

=
1

n

(
E[h2

1]− E[h1]
2
)

=
1

n

(∫ 1

0

(1− x2)dx− (
π

4
)2
)

=
1

n
(
2

3
− (

π

4
)2)

Def : Let Y be a quantity, and let Ŷ be an approximation of Y . Then, the
absolute error is

e = Ŷ − Y

and the relative error is

ε =
Ŷ − Y

Y

Note:

1 The sign is correct in the sense that e.g. if Ŷ = 4 and Y = 3 then e = 1
means that Ŷ is an overestimate

2 Ŷ = Y + e = Y + Y ε = Y (1 + ε), so 100 · ε is the percentage error.

5

