Lecture 5: Sources of Error

Nigel Shen cs5897@nyu.edu

February 2022

1 Written Homework 1 Hint

The problem we want to solve is the convergence of $f(y)=\frac{1}{2}\left(\frac{x}{y}+y\right)$.
Our goal is to:
1 Fix $y_{0}>0$
2 If $y_{0}<\sqrt{x}$, check the region where y_{1} falls in, and choose $[a, b]$ wisely so that the Contract Mapping Theorem can be applied.

2 Four Major sources of error

1. Truncation error
2. Termination error
3. Statistical error
4. Round off error (Not covered in this lecture)

3 Truncation Error

Let's compute a finite difference approximation to the derivative:

$$
f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x) h^{2}}{2}+O\left(h^{3}\right)
$$

Subtract $f(x)$ from both sides, divide by h, and rearrange, we get:

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+\frac{f^{\prime \prime}(x) h}{2}+O\left(h^{2}\right)
$$

If we truncate and approximate $f^{\prime}(x)$ with the $k=1$ Taylor polynomial, we get:

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

with truncation error:

$$
\frac{f^{\prime \prime}(x) h}{2}+O\left(h^{2}\right)
$$

This particular finite difference approximation is called a forward difference.
Exercise: With $x=\frac{\pi}{2}$, approximate $\frac{d}{d x} \sin (x)$ at $x+h$ where $h=0.1,0.01,0.001, \ldots$. What trend do you observe? Can you relate it to the values of $\frac{f^{\prime \prime}(x)}{2}$?

Def: The error in an approximation like this can be written as $C h^{p}+O\left(h^{p}+1\right)$, then the approximation is $p^{t h}$ order accurate.

Thus, we find that $f(x) \approx \frac{f(x+h)-f(x)}{h}$ is first-order accurate. If we did a least square fit of the errors, we would expect them to match $C h^{1}$.

Now, in order to increase the accuracy, let's take the Taylor expansion with one more term:

$$
\begin{aligned}
& f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) \frac{h^{2}}{2}+f^{(3)}(x) \frac{h^{3}}{6}+O\left(h^{4}\right) \\
& f(x-h)=f(x)-f^{\prime}(x) h+f^{\prime \prime}(x) \frac{h^{2}}{2}-f^{(3)}(x) \frac{h^{3}}{6}+O\left(h^{4}\right)
\end{aligned}
$$

Subtract them, we get:

$$
f(x+h)-f(x-h)=2 f^{\prime}(x) h+\frac{f^{(3)}(x)}{3} h^{3}+O\left(h^{4}\right)
$$

Rearrange terms, we get:

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}-\frac{f^{(3)}(x)}{6} h^{2}+O\left(h^{3}\right)
$$

This is called a central difference. It is second-order accurate.

Exercise:

1. What happens if $f^{(3)}(x)=0$?
2. $p(x)=a x^{2}+b x+c$. Show that the central difference scheme is "exact": That there is no error.

4 Termination Error

We saw two different kinds of iterative schemes in previous lectures:

* $x_{n+1}=f\left(x_{n}\right)$, which solves $f(x)=x$ to find the fixed points;
* $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ which solves $f(x)=0$ (Newton's equation solving root-finding)

Exercise: The Secant method makes a linear approximation from $x_{n}, x_{n-1}, f\left(x_{n}\right), f\left(x_{n-1}\right)$ at each step and finds that line's intersection with the x-axis to compute x_{n+1}. Newton's method uses f_{n} and f_{n}^{\prime}. Write down a method similar to the secant method which makes a quadratic approximation using x_{n}, x_{n-1}, x_{n-2} and $f_{n}, f_{n-1} f_{n-2}$ and finds its intersection with the x -axis at each step.

Let's denote $e_{n}=x_{n}-x$ where x is the solution. This is the absolute error at each step. The method converges with order q accuracy if

$$
\lim _{n \rightarrow \infty} \frac{e_{n+1}}{e_{n}^{q}}=\mu \in(0,1)
$$

Note: e_{n} is as hard to compute as x_{n}. We don't know x. If we know e_{n} and x_{n} well, then we can find $x=x_{n}+e_{n}$ and we are done. We can instead look at $x_{n+1}-x_{n}$, which tells us if x_{n} converges.

5 Statistical Error

We'll see later in the class methods for approximating integrals ("numerical quadrature"). The idea comes from the derivation of Riemann integral:

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

Mid-point Estimation: If the interval $[a, b]$ is not big, we might want to use Mid-point estimation: $\int_{a}^{b} f(x) d x \approx f\left(\frac{a+b}{2}\right)(b-a)$

Exercise: Derive an error estimate for the midpoint rule applied to $\int_{a}^{b} f(x) d x$
assuming $b-a=O(h), h>0$ and using a Taylor expansion.

For integrating multidimensional functions we can use tensor product quadrature:

$$
\int_{a_{1}}^{b_{1}} \int_{a_{0}}^{b_{0}} f(x, y) d x d y \approx \sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} f\left(x_{i}, y_{j}\right)
$$

Let's say we want to integrate a d-dimensional function using a $1 D$ n-points quadrature rule, then the time complexity is $O\left(n^{d}\right)$. Therefore, instead people use Monte-Carlo methods.

Monte-Carlo Method: The idea is to generate a sequence of random approximations x_{n} approximating x. The error will frequency decay like $O\left(\frac{1}{\sqrt{n}}\right)$ independent of dimension.

Example: Approximating π
The idea is to make a dartboard:

Let $\left(x_{n}, y_{n}\right)$ be the position of the $n^{t h}$ dart throw, where $x_{n}, y_{n} \sim \operatorname{Uniform}([0,1])$ and x_{n}, y_{n} are independent variables, so that our throws are independently and identically distributed.
After each throw we check whether it is in the shaded region:

$$
h_{n}= \begin{cases}1 & x_{n}^{2}+y_{n}^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

We expect that

$$
\frac{\sum_{i=1}^{n} h_{i}}{n} \rightarrow \frac{\pi}{4}
$$

Let $p=\frac{\pi}{4}$ and $p_{n}=\frac{h_{n}}{n}$. We then have

$$
\begin{gathered}
E\left[p_{n}-p\right]=E\left[p_{n}\right]-E[p] \\
=E\left[p_{n}\right]-p=E\left[\frac{\sum_{i=1}^{n} h_{i}}{n}\right]-p \\
=\frac{\sum_{i=1}^{n} E\left[h_{i}\right]}{n}-p=E\left[h_{1}\right]-p \\
=p-p=0
\end{gathered}
$$

Thus, p_{n} is an unbiased estimate. We then check the convergence rate of the sequence:

$$
\begin{gathered}
\operatorname{Var}\left(p_{n}-p\right)=\operatorname{Var}\left(p_{n}\right)-\operatorname{Var}(p) \\
\begin{array}{c}
\operatorname{Var}\left(p_{n}\right)-0=\frac{\sum_{i=1}^{n} \operatorname{Var}\left(h_{i}\right)}{n^{2}} \\
=\frac{\operatorname{Var}\left(h_{1}\right)}{n} \\
=\frac{1}{n}\left(E\left[h_{1}^{2}\right]-E\left[h_{1}\right]^{2}\right) \\
=\frac{1}{n}\left(\int_{0}^{1}\left(1-x^{2}\right) d x-\left(\frac{\pi}{4}\right)^{2}\right) \\
=\frac{1}{n}\left(\frac{2}{3}-\left(\frac{\pi}{4}\right)^{2}\right)
\end{array}
\end{gathered}
$$

Def: Let Y be a quantity, and let \hat{Y} be an approximation of Y. Then, the absolute error is

$$
e=\hat{Y}-Y
$$

and the relative error is

$$
\varepsilon=\frac{\hat{Y}-Y}{Y}
$$

Note:

1 The sign is correct in the sense that e.g. if $\hat{Y}=4$ and $Y=3$ then $e=1$ means that \hat{Y} is an overestimate
$2 \hat{Y}=Y+e=Y+Y \varepsilon=Y(1+\varepsilon)$, so $100 \cdot \varepsilon$ is the percentage error.

