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Solution of equations by iteration

1.1 Introduction

Equations of various kinds arise in a range of physical applications and
a substantial body of mathematical research is devoted to their study.
Some equations are rather simple: in the early days of our mathematical
education we all encountered the single linear equation ax+b = 0, where
a and b are real numbers and a # 0, whose solution is given by the
formula z = —b/a. Many equations, however, are nonlinear: a simple
example is azx? + bz + ¢ = 0, involving a quadratic polynomial with real
coefficients a, b, ¢, and a # 0. The two solutions to this equation, labelled
x1 and x9, are found in terms of the coefficients of the polynomial from
the familiar formulae

B —b+ Vb2 — 4dac —b— Vb2 — 4dac (1.1)
- 2a ’ 2a ' '

It is less likely that you have seen the more intricate formulae for the
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solution of cubic and quartic polynomial equations due to the sixteenth
century Italian mathematicians Niccolo Fontana Tartaglia (1499-1557)
and Lodovico Ferrari (1522-1565), respectively, which were published
by Girolamo Cardano (1501-1576) in 1545 in his Artis magnae sive de
requlis algebraicis liber unus. In any case, if you have been led to believe
that similar expressions involving radicals (roots of sums of products of
coefficients) will supply the solution to any polynomial equation, then
you should brace yourself for a surprise: no such closed formula exists
for a general polynomial equation of degree n when n > 5. It transpires
that for each n > 5 there exists a polynomial equation of degree n with
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integer coefficients which cannot be solved in terms of radicals;! such is,
for example, 2° — 4x — 2 = 0.

Since there is no general formula for the solution of polynomial equa-
tions, no general formula will exist for the solution of an arbitrary non-
linear equation of the form f(z) = 0 where f is a continuous real-valued
function. How can we then decide whether or not such an equation
possesses a solution in the set of real numbers, and how can we find a
solution?

The present chapter is devoted to the study of these questions. Our
goal is to develop simple numerical methods for the approximate solution
of the equation f(x) = 0 where f is a real-valued function, defined and
continuous on a bounded and closed interval of the real line. Methods
of the kind discussed here are iterative in nature and produce sequences
of real numbers which, in favourable circumstances, converge to the
required solution.

1.2 Simple iteration

Suppose that f is a real-valued function, defined and continuous on a
bounded closed interval [a, b] of the real line. It will be tacitly assumed
throughout the chapter that a < b, so that the interval is nonempty. We
wish to find a real number £ € [a, b] such that f(£) = 0. If such £ exists,
it is called a solution to the equation f(z) = 0.

Even some relatively simple equations may fail to have a solution in
the set of real numbers. Consider, for example,

fiz—az?+1.

Clearly f(z) = 0 has no solution in any interval [a, b] of the real line.
Indeed, according to (1.1), the quadratic polynomial 2241 has two roots:
z1 = +v/—1 =1 and x5 = —/—1 = —1. However, these belong to the set
of imaginary numbers and are therefore excluded by our definition of
solution which only admits real numbers. In order to avoid difficulties
of this kind, we begin by exploring the existence of solutions to the
equation f(z) = 0 in the set of real numbers. Our first result in this
direction is rather simple.
L This result was proved in 1824 by the Norwegian mathematician Niels Henrik Abel
(1802-1829), and was further refined in the work of Evariste Galois (1811-1832)

who clarified the circumstances in which a closed formula may exist for the solution
of a polynomial equation of degree n in terms of radicals.
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Theorem 1.1 Let f be a real-valued function, defined and continuous
on a bounded closed interval [a,b] of the real line. Assume, further, that

f(a)f(b) < 0; then, there exists & in [a,b] such that f(£) = 0.

Proof If f(a) =0 or f(b) =0, then £ = a or £ = b, respectively, and the
proof is complete. Now, suppose that f(a)f(b) # 0. Then, f(a)f(b) < 0;
in other words, 0 belongs to the open interval whose endpoints are f(a)
and f(b). By the Intermediate Value Theorem (Theorem A.1), there
exists ¢ in the open interval (a,b) such that f(£) = 0. L]

To paraphrase Theorem 1.1, if a continuous function f has opposite
signs at the endpoints of the interval [a, b], then the equation f(z) =0
has a solution in (a,b). The converse statement is, of course, false.
Consider, for example, a continuous function defined on [a,b] which
changes sign in the open interval (a,b) an even number of times, with
f(a)f(b) # 0; then, f(a)f(b) > 0 even though f(xz) = 0 has solutions
inside [a,b]. Of course, in the latter case, there exist an even number
of subintervals of (a,b) at the endpoints of each of which f does have
opposite signs. However, finding such subintervals may not always be
easy.

To illustrate this last point, consider the rather pathological function

f 1 1
DT = —

2 1+ Mz —1.05
depicted in Figure 1.1 for x in the closed interval [0.8,1.8] and M = 200.
The solutions 1 = 1.05— (1/M) and x5 = 1.05+ (1/M) to the equation

f(x) = 0 are only a distance 2/M apart and, for large and positive M,

(1.2)

locating them computationally will be a challenging task.

Remark 1.1 If you have access to the mathematical software package
Maple, plot the function f by typing

plot(1/2-1/(1+200*abs(x-1.05)), x=0.8..1.8, y=-0.5..0.6);

at the Maple command line, and then repeat this experiment by choosing
M = 2000, 20000, 200000, 2000000, and 20000000 in place of the num-
ber 200. What do you observe? For the last two values of M, replot the
function f for x in the subinterval [1.04999,1.05001]. O

An alternative sufficient condition for the existence of a solution to
the equation f(x) = 0 is arrived at by rewriting it in the equivalent
form z — g(x) = 0 where ¢ is a certain real-valued function, defined
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Fig. 1.1. Graph of the function f: z+— 1 — m for x € [0.8,1.8].

and continuous on [a, b]; the choice of g and its relationship with f will
be clarified below through examples. Upon such a transformation the
problem of solving the equation f(z) = 0 is converted into one of finding

¢ such that & — g(&) = 0.

Theorem 1.2 (Brouwer’s Fixed Point Theorem) Suppose that g
1s a real-valued function, defined and continuous on a bounded closed
interval [a,b] of the real line, and let g(x) € [a,b] for all x € [a,b].
Then, there exists £ in [a,b] such that & = g(&); the real number £ is
called a fixed point of the function g.

Proof Let f(z) =x—g(z). Then, f(a) = a—g(a) < 0 since g(a) € [a, b]
and f(b) = b — g(b) > 0 since g(b) € [a,b]. Consequently, f(a)f(b) <0,
with f defined and continuous on the closed interval [a,b]. By Theorem
1.1 there exists £ € [a, b] such that 0 = f(§) =& — g(§). ]

Figure 1.2 depicts the graph of a function x — g(x), defined and
continuous on a closed interval [a,b] of the real line, such that g(x)
belongs to [a,b] for all z in [a,b]. The function g has three fixed points
in the interval [a, b]: the z-coordinates of the three points of intersection
of the graph of g with the straight line y = .

Of course, any equation of the form f(z) = 0 can be rewritten in the
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Fig. 1.2. Graph of a function g, defined and continuous on the interval [a, b],
which maps [a, b] into itself; g has three fixed points in [a, b]: the z-coordinates
of the three points of intersection of the graph of g with y = .

equivalent form of z = g(z) by letting g(z) = x+ f(x). While there is no
guarantee that the function g, so defined, will satisfy the conditions of
Theorem 1.2, there are many alternative ways of transforming f(z) =0
into = g(x), and we only have to find one such rearrangement with g
continuous on [a, b] and such that g(x) € [a,b] for all = € [a,b]. Sounds
simple? Fine. Take a look at the following example.

Example 1.1 Consider the function f defined by f(x) = e* —2x — 1
for x € [1,2]. Clearly, f(1) < 0 and f(2) > 0. Thus we deduce from
Theorem 1.1 the existence of & in [1,2] such that f(§) = 0.

In order to relate this example to Theorem 1.2, let us rewrite the equa-
tion f(x) = 0 in the equivalent form x —g(z) = 0, where the function g is
defined on the interval [1,2] by g(z) = In(2z 4 1); here (and throughout
the book) In means log,. As g(1) € [1,2], g(2) € [1,2] and g is monotonic
increasing, it follows that g(x) € [1,2] for all x € [1,2], showing that g
satisfies the conditions of Theorem 1.2. Thus, again, we deduce the
existence of £ € [1,2] such that £ — g(§) = 0 or, equivalently, f(£) = 0.
We could have also rewritten our equation as x = (e —1)/2. However,
the associated function g: x — (e* —1)/2 does not map the interval [1, 2]
into itself, so Theorem 1.2 cannot then be applied. O
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Although the ability to verify the existence of a solution to the equa-
tion f(x) = 0 is important, none of what has been said so far provides
a method for solving this equation. The following definition is a first
step in this direction: it will lead to the construction of an algorithm for
computing an approximation to the fixed point ¢ of the function g, and
will thereby supply an approximate solution to the equivalent equation

f(z) =o.

Definition 1.1 Suppose that g is a real-valued function, defined and
continuous on a bounded closed interval [a, b] of the real line, and assume
that g(z) € [a,b] for all x € [a,b]. Given that xog € [a,b], the recursion
defined by

Tpr1 = g(Tk), k=0,1,2,..., (1.3)

1s called a simple iteration; the numbers xy, k > 0, are referred to as
iterates.

If the sequence (z) defined by (1.3) converges, the limit must be a
fixed point of the function g, since g is continuous on a closed interval.
Indeed, writing & = limy_, o T, we have that

§= lim g = lim g(zx) =g (kllr{:O xk) =9(§), (1.4)

where the second equality follows from (1.3) and the third equality is a
consequence of the continuity of g.

A sufficient condition for the convergence of the sequence (xy) is pro-
vided by our next result which represents a refinement of Brouwer’s
Fixed Point Theorem, under the additional assumption that the map-
ping g is a contraction.

Definition 1.2 (Contraction) Suppose that g is a real-valued func-
tion, defined and continuous on a bounded closed interval |a,b] of the
real line. Then, g is said to be a contraction on [a,b] if there exists a
constant L such that 0 < L <1 and

l9(z) —g(y)| < Llz —y| Va,y € a,b]. (1.5)

Remark 1.2 The terminology ‘contraction’ stems from the fact that
when (1.5) holds with 0 < L < 1, the distance | g(x) — g(y) | between the
images of the points x, y is (at least 1/ L times) smaller than the distance
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|z —y| between x and y. More generally, when L is any positive real
number, (1.5) is referred to as a Lipschitz condition.!

Armed with Definition 1.2, we are now ready to state the main result
of this section.

Theorem 1.3 (Contraction Mapping Theorem) Let g be a real-
valued function, defined and continuous on a bounded closed interval
la,b] of the real line, and assume that g(x) € [a,b] for all x € [a,b].
Suppose, further, that g is a contraction on [a,b]. Then, g has a unique
fized point £ in the interval [a,b]. Moreover, the sequence (xy) defined
by (1.3) converges to & as k — oo for any starting value zq in |a,b].

Proof The existence of a fixed point & for g is a consequence of Theorem
1.2. The uniqueness of this fixed point follows from (1.5) by contradic-
tion: for suppose that g has a second fixed point, 7, in [a,b]. Then,

[E—nl=19(&) —g(n)| < LIE—n],

e, (1—L)[€—n|<0. As1—L >0, we deduce that n = ¢&.

Let xzy be any element of [a,b] and consider the sequence (zj) de-
fined by (1.3). We shall prove that (zj) converges to the fixed point &.
According to (1.5) we have that

|ze =&l = lg(zr) —9(©) | < Lz = €|, k=1,

from which we then deduce by induction that
|z =&l < LFlzg— €|, k>1. (1.6)

As L € (0,1), it follows that limg_.., L¥ = 0, and hence we conclude
that hmk_,oo | T — €| = 0. L]

Let us illustrate the Contraction Mapping Theorem by an example.

Example 1.2 Consider the equation f(x) =0 on the interval [1,2] with
f(x) =e*—=2x—1, as in Example 1.1. Recall from Example 1.1 that this
equation has a solution, &, in the interval [1,2], and & is a fixed point of
the function g defined on [1,2] by g(x) = In(2x + 1).

1 Rudolf Otto Sigismund Lipschitz (14 May 1832, Konigsberg, Prussia (now Kalin-
ingrad, Russia) — 7 October 1903, Bonn, Germany) made important contributions
to number theory, the theory of Bessel functions and Fourier series, the theory
of ordinary and partial differential equations, and to analytical mechanics and
potential theory.
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Table 1.1. The sequence (xy) defined by (1.8).

Tk

1.000000
1.098612
1.162283
1.201339
1.224563
1.238121
1.245952
1.250447
1.253018
1.254486
1.255323
1.255800

aalles N0 JEN NG UV VIl =) o

_ =

Now, the function g is defined and continuous on the interval [1, 2], and g
is differentiable on (1,2). Thus, by the Mean Value Theorem (Theorem
A.3), for any z, y in [1, 2] we have that

[9(z) —gW) [ =1g'(N(= =) [ =g’ ]|z —y| (1.7)
for some 7 that lies between x and y and is therefore in the interval
[1,2]. Further, ¢'(z) = 2/(2z + 1) and ¢"(z) = —4/(2x + 1)%. As

g"(z) < 0 for all x in [1,2], ¢’ is monotonic decreasing on [1,2]. Hence
g (1) >4g'(n) >4¢'(2), ie., g (n) €2/52/3]. Thus we deduce from (1.7)
that

lg(z) —g(y)| < Llz—y| Vz,ye[l,2],

with L = 2/3. According to the Contraction Mapping Theorem, the
sequence (zy) defined by the simple iteration

Tp1 = In(2x + 1), k=0,1,2,..., (1.8)

converges to & for any starting value ¢ in [1, 2]. Let us choose xy = 1, for
example, and compute the next 11 iterates, say. The results are shown
in Table 1.1. Even though we have carried six decimal digits, after 11
iterations only the first two decimal digits of the iterates x; appear to
have settled; thus it seems likely that & = 1.26 to two decimal digits. <

You may now wonder how many iterations we should perform in (1.8)
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to ensure that all six decimals have converged to their correct values. In
order to answer this question, we need to carry out some analysis.

Theorem 1.4 Consider the simple iteration (1.3) where the function
g satisfies the hypotheses of the Contraction Mapping Theorem on the
bounded closed interval [a,b]. Given xo € [a,b] and a certain tolerance
e > 0, let ko(e) denote the smallest positive integer such that xy, is no
more than € away from the (unknown) fixed point £, i.e., |z — &| < €,

for all k > ko(g). Then,

o(e) < In|z; —xp| —In(e(l — L))

< D +1, (1.9)

where, for a real number x, [x] signifies the largest integer less than or
equal to x.
Proof From (1.6) in the proof of Theorem 1.3 we know that
o — €l < LFlwo — €], k=1,
Using this result with £ = 1, we obtain
[z — €| = |zo — 21+ 21 — ¢

<l|wo — 1| + |21 — ¢
<l|zg — 21| + Llzo — .

Hence

lz0 — | <

1_L|$0—I1|.

By substituting this into (1.6) we get
k
1-L
Thus, in particular, |z; — £| < € provided that
1
1-L
On taking the (natural) logarithm of each side in the last inequality, we

find that |z — £| < ¢ for all k such that
. In|x; — 29| —In(e(1 = L))
- In(1/L)

|z, — €| <

|331 —ZC()‘. (110)

Lk

|21 — 20| < €.

Therefore, the smallest integer ko(e) such that |z — & < e for all
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k > ko(e) cannot exceed the expression on the right-hand side of the
inequality (1.9). O

This result provides an upper bound on the maximum number of
iterations required to ensure that the error between the kth iterate xj
and the (unknown) fixed point £ is below the prescribed tolerance e.
Note, in particular, from (1.9), that if L is close to 1, then kg(e) may
be quite large for any fixed €. We shall revisit this point later on in the
chapter.

Example 1.3 Now we can return to Frxample 1.2 to answer the ques-
tion posed there about the maximum number of iterations required, with
starting value xg = 1, to ensure that the last iterate computed is correct
to six decimal digits.

Letting ¢ = 0.5 x 10~ and recalling from Example 1.2 that L = 2/3, the
formula (1.9) yields ko(e) < [32.778918] + 1, so we have that ko(c) < 33.
In fact, 33 is a somewhat pessimistic overestimate of the number of
iterations required: computing the iterates zj successively shows that
already xo5 is correct to six decimal digits, giving & = 1.256431. O

Condition (1.5) can be rewritten in the following equivalent form:

‘M‘ <L Vaxyclab], z#y,

with L € (0,1), which can, in turn, be rephrased by saying that the
absolute value of the slope of the function g does not exceed L € (0,1).
Assuming that ¢ is a differentiable function on the open interval (a,b),
the Mean Value Theorem (Theorem A.3) tells us that

g(l’; — z(y) _ 9/(77)
for some 7 that lies between x and y and is therefore contained in the
interval (a,b).
We shall therefore adopt the following assumption that is somewhat
stronger than (1.5) but is easier to verify in practice:

g is differentiable on (a,b) and
(1.11)
3L € (0,1) such that |¢'(x)| < L for all z € (a,b) .

Consequently, Theorem 1.3 still holds when (1.5) is replaced by (1.11).
We note that the requirement in (1.11) that g be differentiable is
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indeed more demanding than the Lipschitz condition (1.5): for example,
g(x) = |z| satisfies the Lipschitz condition on any closed interval of the
real line, with L = 1, yet ¢ is not differentiable at x = 0.

Next we discuss a local version of the Contraction Mapping Theorem,
where (1.11) is only assumed in a neighbourhood of the fixed point £
rather than over the entire interval [a, b].

Theorem 1.5 Suppose that g is a real-valued function, defined and
continuous on a bounded closed interval [a,b] of the real line, and assume
that g(x) € [a,b] for all x € [a,b]. Let & = g(§) € |a,b] be a fixed point
of g (whose existence is ensured by Theorem 1.2), and assume that g
has a continuous derivative in some neighbourhood of & with |g'(§)| < 1.
Then, the sequence (xy) defined by xi+1 = g(xk), k > 0, converges to £
as k — 00, provided that xq is sufficiently close to &.

Proof By hypothesis, there exists h > 0 such that ¢’ is continuous in
the interval [ — h, £+ h]. Since |¢'(§)| < 1 we can find a smaller interval
Is = [€—6,£+406], where 0 < § < h, such that |¢’(z)| < L in this interval,
with L < 1. To do so, take L = (1 + |¢’(£)|) and then choose § < h
such that

9" (x) = g"(€)] < 5(1 = 1g"(&)])

for all = in Is; this is possible since ¢’ is continuous at £. Hence,

9" (@) < 1g'(2) = ' () + ') < 31 = |g"(€)) + 19 ()| = L

for all x € Is. Now, suppose that xj lies in the interval Is. Then,

rp1 — & = glan) — & = glar) — g(&) = (v — &g’ (k)

by the Mean Value Theorem (Theorem A.3), where n; lies between zy
and &, and therefore also belongs to Is. Hence |¢'(nx)| < L, and

2x1 — €] < Ly — €. (1.12)

This shows that x;1 also lies in I, and a simple argument by induction
shows that if xy belongs to Is, then all xx, kK > 0, are in Is, and also

2 — €| < LFlzg — €|, k>0, (1.13)

Since 0 < L < 1 this implies that the sequence (xx) converges to £. [
L If you are familiar with the concept of Lebesgue measure, you will find the following
result, known as Rademacher’s Theorem, revealing. A function f satisfying

the Lipschitz condition (1.5) on an interval [a,b] is differentiable on [a,b], except,
perhaps, at the points of a subset of zero Lebesgue measure.
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If the conditions of Theorem 1.5 are satisfied in the vicinity of a fixed
point £, then the sequence (xj) defined by the iteration zp1 = g(zg),
k > 0, will converge to £ for any starting value xq that is sufficiently
close to £&. If, on the other hand, the conditions of Theorem 1.5 are
violated, there is no guarantee that any sequence (zj) defined by the
iteration xxy1 = g(xk), k > 0, will converge to the fixed point ¢ for
any starting value xy near £. In order to distinguish between these two
cases, we introduce the following definition.

Definition 1.3 Suppose that g is a real-valued function, defined and
continuous on the bounded closed interval [a,b], such that g(x) € |a,b]
for all x € [a,b], and let £ denote a fized point of g. We say that & is
a stable fixed point of g, if the sequence (1) defined by the iteration
rp+1 = g(xk), k > 0, converges to & whenever the starting value xg is
sufficiently close to £&. Conversely, if no sequence (xy) defined by this
iteration converges to & for any starting value xo close to &, except for
xg = &, then we say that £ is an unstable fixed point of g.

We note that, with this definition, a fixed point may be neither stable
nor unstable (see Exercise 2).

As will be demonstrated below in Example 1.5, even some very simple
functions may possess both stable and unstable fixed points. Theorem
1.5 shows that if ¢’ is continuous in a neighbourhood of £, then the
condition |¢’(£)| < 1 is sufficient to ensure that ¢ is a stable fixed point.
The case of an unstable fixed point will be considered later, in Theorem
1.6.

Now, assuming that £ is a stable fixed point of g, we may also be in-
terested in the speed at which the sequence (x) defined by the iteration
Tp+1 = g(zk), k > 0, converges to £. Under the hypotheses of Theorem
1.5, it follows from the proof of that theorem that

T Tk B |M —lg©).  (114)

k—oo |:ck — §| k—oo Tk —f
Consequently, we can regard |g’(§)| € (0,1) as a measure of the speed of
convergence of the sequence (x) to the fixed point £.

Definition 1.4 Suppose that & = limg_. . We say that the sequence
(xk) converges to & at least linearly if there exist a sequence () of
positive real numbers converging to 0, and p € (0,1), such that

e — €| <ex, k=0,1,2,..., and lim ng:,u. (1.15)

k—oo Ef
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If (1.15) holds with u = 0, then the sequence (xy) is said to converge to
¢ superlinearly.

If (1.15) holds with pu € (0,1) and e, = |z, — &|, K =0,1,2,..., then
(k) is said to converge to € linearly, and the number p = —logy p is
then called the asymptotic rate of convergence of the sequence. If
(1.15) holds with p = 1 and e = |z — €|, k = 0,1,2,..., the rate of
convergence 1S slower than linear and we say that the sequence converges
to € sublinearly.

The words ‘at least’ in this definition refer to the fact that we only
have inequality in |z, —€&| < eg, which may be all that can be ascertained
in practice. Thus, it is really the sequence of bounds ¢, that converges
linearly.

For a linearly convergent sequence the asymptotic rate of convergence
p measures the number of correct decimal digits gained in one iteration;
in particular, the number of iterations required in order to gain one more
correct decimal digit is at most [1/p] + 1. Here [1/p] denotes the largest
integer that is less than or equal to 1/p.

Under the hypotheses of Theorem 1.5, the equalities (1.14) will hold
with p = |¢'(§)| € [0,1), and therefore the sequence (zx) generated
by the simple iteration will converge to the fixed point £ linearly or
superlinearly.

Example 1.4 Given that « is a fized positive real number, consider the
function g defined on the interval [0,1] by

g(x) _ 2—{1+(10g2(1/x))1/a}a for D<o < 1,
0 forx=0.

As lim, o4 g(z) = 0, the function g is continuous on [0, 1]. Moreover, g
is strictly monotonic increasing on [0,1] and g(x) € [0,1/2] C [0, 1] for
all z in [0, 1]. We note that £ = 0 is a fixed point of g (cf. Figure 1.3).
Consider the sequence (zj) defined by xp+1 = g(xk), & > 0, with
xrg = 1. It is a simple matter to show by induction that zp = 2~k
k > 0. Thus we deduce that (xy) converges to £ =0 as k — oco. Since

. 1 forO<a<l,
klim ML) = % fora=1,
ool Tk 0 fora>1,

we conclude that for o € (0, 1) the sequence (z) converges to & = 0 sub-
linearly. For @ = 1 it converges to & = 0 linearly with asymptotic rate
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Fig. 1.3. Graph of the function g from Example 1.4 on the interval = € [0, 1]
for (a) a=1/2, (b) a=1, (c) a = 2.

p = —log,op = log,y 2. When a > 1, the sequence converges to the fixed
point ¢ = 0 superlinearly. The same conclusions could have been reached
by showing (through tedious differentiation) that lim, g+ ¢'(x) = pu,
with o as defined above for the various values of the parameter . <

For a linearly convergent simple iteration 11 = g(x), where ¢’ is
continuous in a neighbourhood of the fixed point £ and 0 < |¢'(§)| < 1,
Definition 1.4 and (1.14) imply that the asymptotic rate of convergence



1.2 Simple iteration 15

of the sequence (zy) is p = —logyo|¢’(€)|. Evidently, a small value of
|g'(&)| corresponds to a large positive value of p and will result in more
rapid convergence, while if |¢'(£)| < 1 but |¢’(§)] is very close to 1, p will
be a small positive number and the sequence will converge very slowly.!

Next, we discuss the behaviour of the iteration (1.3) in the vicinity of
an unstable fized point €. If |¢g'(£)| > 1, then the sequence (z) defined
by (1.3) does not converge to £ from any starting value zg; the next
theorem gives a rigorous proof of this fact.

Theorem 1.6 Suppose that £ = g(&), where the function g has a con-
tinuous derivative in some neighbourhood of €, and let |g'(§)| > 1. Then,
the sequence (xy) defined by xi+1 = g(x), k > 0, does not converge to
& from any starting value xo, o # £.

Proof Suppose that xg # £. As in the proof of Theorem 1.5, we can see
that there is an interval Is = [£—6,£+6], 6 > 0, in which |¢'(z)| > L > 1
for some constant L. If zj lies in this interval, then

i1 — &l = |g(zx) — 9(&)| = [(zr — ) g' (k)| = Llzi — ],

for some 7, between zp and €. If xp.q lies in Is the same argument
shows that

[Tps2 — & > Llzgpr — & > Ly, — €],

and so on. Evidently, after a finite number of steps some member of

the sequence i1, Try2, Trys, ... must be outside the interval Is, since
L > 1. Hence there can be no value of ky = ko(6) such that |z, — & < 6
for all k£ > kg, and the sequence therefore does not converge to &. L]

Example 1.5 In this example we explore the simple iteration (1.3) for
g defined by

g(x) = 3(2° +¢)
where ¢ € R is a fized constant.

The fixed points of the function g are the solutions of the quadratic
equation x? — 2z + ¢ = 0, which are 1+ /(1 —¢). If ¢ > 1 there are no
solutions (in the set R of real numbers, that is!), if ¢ = 1 there is one
solution in R, and if ¢ < 1 there are two.

1 Thus 0 < p < 1 corresponds to slow linear convergence and p >> 1 to fast linear

convergence. It is for this reason that we defined the asymptotic rate of conver-
gence p, for a linearly convergent sequence, as —log;o p (or —logq |¢’(§)]) rather

than p (or [g'(€)]) -
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Suppose now that ¢ < 1; we denote the solutions by {1 = 1—+/(1—¢)
and & = 1+4/(1—c), so that & < 1 < &. We see at once that ¢’'(z) = z,
so the fixed point & is unstable, but that the fixed point &; is stable
provided that —3 < ¢ < 1. In fact, it is easy to see that the sequence
(z)) defined by the iteration xx11 = g(zk), £ > 0, will converge to &;
if the starting value z( satisfies —§; < xg < &. (See Exercise 1.) If
¢ is close to 1, ¢’(&1) will also be close to 1 and convergence will be
slow. When ¢ = 0, £&; = 0 so that convergence is superlinear. This is an
example of quadratic convergence which we shall meet later. o

The purpose of our next example is to illustrate the concept of asymp-
totic rate of convergence. According to Definition 1.4, the asymptotic
rate of convergence of a sequence describes the relative closeness of suc-
cessive terms in the sequence to the limit £ as £ — oo. Of course, for
small values of k the sequence may behave in quite a different way, and
since in practical computation we are interested in approximating the
limit of the sequence by using just a small number of terms, the asymp-
totic rate of convergence may sometimes give a misleading impression.

Example 1.6 In this example we study the convergence of the sequences
(ug) and (vk) defined by

Ug+1 = g1 (ug), k=0,1,2,..., ug =1,
V41 = gQ(”k)? k= 07 1727 DRI Vg = 1,

where
T

91(2) =099z and  92(2) = gy

Each of the two functions has a fixed point at £ = 0, and we easily find
that g7 (0) = 0.99, ¢5(0) = 1. Hence the sequence (uy) is linearly con-
vergent to zero with asymptotic rate of convergence p = —log;;0.99 ~
0.004, while Theorem 1.5 does not apply to the sequence (vg). It is quite
easy to show by induction that vy = (k + 1)71° so the sequence (vy)
also converges to zero, but since limy_, o (vg11/vx) = 1 the convergence
is sublinear. This means that, in the limit, (ux) will converge faster than
(vr). However, this is not what happens for small k, as Table 1.2 shows
very clearly.

The sequence (v) has converged to zero correct to 6 decimal digits
when k£ = 4, and to 10 decimal digits when k& = 10, at which stage uy



1.8 Iterative solution of equations 17

Table 1.2. The sequences (ux) and (vy) in Example 1.6.

k ULk Vk
0 1.000000 1.000000
1 0.990000 0.000977
2 0.980100 0.000017
3 0970299 0.000001
4 0.960596 0.000000
5 0.950990 0.000000
6 0.941480 0.000000
7 0.932065 0.000000
8 0.922745 0.000000
9 0.913517 0.000000
10 0.904382 0.000000

is still larger than 0.9. Although (uj) eventually converges faster than
vy, we find that u, = (0.99)F becomes smaller than v, = (k + 1)710
when

10

k> n(1/0.99)

In(k+1).

This first happens when k£ = 9067, at which point u; and v; are both
roughly 10~4°, In this rather extreme example the concept of asymptotic
rate of convergence is not useful, since for any practical purposes (vg)
converges faster than (ug). &

1.3 Iterative solution of equations

In this section we apply the idea of simple iteration to the solution
of equations. Given a real-valued continuous function f, we wish to
construct a sequence (zy), using iteration, which converges to a solution
of f(z) = 0. We begin with an example where it is easy to derive
various such sequences; in the next section we shall describe a more
general approach.

Example 1.7 Consider the problem of determining the solutions of the
equation f(x) =0, where f: x — e —x — 2.

Since f/(x) = e* — 1 the function f is monotonic increasing for positive
x and monotonic decreasing for negative values of x. Moreover,
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f)=e—3<0,

f(2)=e>—-4>0,
F-l) =el—1<0, (1.16)
f(=2)=e2>0

Hence the equation f(x) = 0 has exactly one positive solution, which
lies in the interval (1,2), and exactly one negative solution, which lies in
the interval (—2,—1). This is illustrated in Figure 1.4, which shows the
graphs of the functions x — e* and = — x + 2 on the same axes. We
shall write & for the positive solution and &> for the negative solution.

hy

4.0 7

3.0 7

2.0

1.0

—IS.O /—2.0 —Il.O 110 '

Fig. 1.4. Graphs of y =e” and y = = + 2.

The equation f(z) = 0 may be written in the equivalent form
r = lIn(z +2),

which suggests a simple iteration defined by g(z) = In(z + 2). We shall
show that the positive solution &; is a stable fixed point of g, while & is
an unstable fixed point of g.

Clearly, ¢'(z) = 1/(z + 2), so 0 < ¢’(&1) < 1, since &; is the positive
solution. Therefore, by Theorem 1.5, the sequence (xj) defined by the
iteration

Tpp1 =In(zp +2), k=0,1,2,..., (1.17)
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will converge to the positive solution, &7, provided that the starting value
zo is sufficiently close to it.! As 0 < ¢/(&;) < 1/3, the asymptotic rate
of convergence of (xj) to &; is certainly greater than log; 3.

On the other hand, ¢'(&2) > 1 since —2 < & < —1, so the sequence
(z)) defined by (1.17) cannot converge to the solution &. It is not
difficult to prove that for xg > & the sequence (z) converges to £; while
if xp < & the sequence will decrease monotonically until z; < —2 for
some k, and then the iteration breaks down as g(x) becomes undefined.

The equation f(x) = 0 may also be written in the form x = e* — 2,
suggesting the sequence (xj) defined by the iteration

Tpr1 = €"F — 2, k=0,1,2,....

In this case g(x) = e*—2 and ¢'(x) = e®. Hence ¢'(&1) > 1, ¢'(&) <e™ 1,
showing that the sequence (xx) may converge to {3, but cannot converge
to &1. It is quite straightforward to show that the sequence converges to
& for any zg < &, but diverges to 400 when xg > &;.

As a third alternative, consider rewriting the equation f(x) = 0 as
x = g(z) where the function g is defined by g(z) = z(e® — z)/2; the
fixed points of the associated iteration z;41 = g(xx) are the solutions &;
and & of f(x) = 0, and also the point 0. For this iteration neither of the
fixed points, £ or &9, is stable, and the sequence (xj) either converges
to 0 or diverges to +o0.

Evidently the given equation may be written in many different forms,
leading to iterations with different properties. O

1.4 Relaxation and Newton’s method

In the previous section we saw how various ingenious devices lead to
iterations which may or may not converge to the desired solutions of a
given equation f(x) = 0. We would obviously benefit from a more gener-
ally applicable iterative method which would, except possibly in special
cases, produce a sequence (zy) that always converges to a required so-
lution. One way of constructing such a sequence is by relaxation.

L In fact, by applying the Contraction Mapping Theorem on an arbitrary bounded

closed interval [0, M] where M > &1, we conclude that the sequence (x) defined
by the iteration (1.17) will converge to &1 from any positive starting value z.
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Definition 1.5 Suppose that f is a real-valued function, defined and
continuous in a neighbourhood of a real number £. Relaxation uses the
sequence (zy) defined by

Lh+1 :xk—)\f(xk), k‘IO,l,Q,... X (1.18)

where X # 0 is a fixed real number whose choice will be made clear below,
and xqy 1S a given starting value near &.

If the sequence (zj) defined by (1.18) converges to &, then & is a
solution of the equation f(z) = 0, as we assume that f is continuous.

It is clear from (1.18) that relaxation is a simple iteration of the form
Trr1 = g(xg), k = 0,1,2,..., with g(x) = =z — Af(z). Suppose now,
further, that f is differentiable in a neighbourhood of £. It then follows
that ¢’'(z) = 1—Af’(x) for all z in this neighbourhood; hence, if f(£) =0
and f'(§) # 0, the sequence (xy) defined by the iteration zx11 = g(xx),
k=0,1,2,..., will converge to £ if we choose A to have the same sign as
f(&), to be not too large, and take x sufficiently close to £. This idea
is made more precise in the next theorem.

Theorem 1.7 Suppose that f is a real-valued function, defined and
continuous in a neighbourhood of a real number &, and let f(§) = 0.
Suppose further that [’ is defined and continuous in some neighbourhood
of &, and let f'(§) # 0. Then, there exist positive real numbers A and
6 such that the sequence (xy) defined by the relaxation iteration (1.18)
converges to & for any xg in the interval [§ — 6,& + 6].

Proof Suppose that f'(§) = «, and that « is positive. If f’(£) is neg-
ative, the proof is similar, with appropriate changes of sign. Since f’
is continuous in some neighbourhood of &, we can find a positive real
number 6 such that f'(z) > %oz in the interval [£ — 6, £+ 6]. Let M be an
upper bound for f’(z) in this interval. Hence M > 1a. In order to fix
the value of the real number A\, we begin by noting that, for any A > 0,

1= AM <1-M'(z)<1—1iXa, z€[{-6E+6].

We now choose A so that these extreme values are equal and opposite,
i.e., 1 =AM = —9 and 1 — %/\Oé = ¢ for a suitable nonnegative real
number 9. There is a unique value of ¥ for which this holds; it is given
by the formula

_2M -«

C2M +a’
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corresponding to
4

2M + o
On defining g(z) = = — Af(x), we then deduce that

()| <9 <1, xel[f-6E+6]. (1.19)

A\ =

Thus we can apply Theorem 1.5 to conclude that the sequence (zy)
defined by the relaxation iteration (1.18) converges to &, provided that
xg is in the interval [£ — 6, & 4 6]. The asymptotic rate of convergence of
the relaxation iteration (1.18) to £ is at least —log; ¥. O

We can now extend the idea of relaxation by allowing A to be a contin-
uous function of z in a neighbourhood of ¢ rather than just a constant.
This suggests an iteration

Tk4+1 = Tk —A(:Ck)f(l'k), k:0,1,2,... y

corresponding to a simple iteration with g(z) = =z — A(x) f(z). If the
sequence (xy) converges, the limit & will be a solution of f(z) = 0,
except possibly when A(§) = 0. Moreover, as we have seen, the ultimate
rate of convergence is determined by ¢'(§). Since f(§) = 0, it follows
that ¢'(§) =1 — X&) f'(§), and (1.19) suggest using a function A which
makes 1 — (&) f/(§) small. The obvious choice is A(z) = 1/f'(x), and
leads us to Newton’s method.?

Definition 1.6 Newton’s method for the solution of f(x) = 0 is defined
by

f(zr) i

Tyl = Tk — f/(afk) )

=0,1,2,..., (1.20)

with prescribed starting value xo. We implicitly assume in the defining
formula (1.20) that f'(xy) # 0 for all k > 0.

I Isaac Newton was born on 4 January 1643 in Woolsthorpe, Lincolnshire, England
and died on 31 March 1727 in London, England. According to the calendar used
in England at the time, Newton was born on Christmas day 1642, and died on
21 March 1727: the Gregorian calendar was not adopted in England until 1752.
Newton made revolutionary advances in mathematics, physics, astronomy and
optics; his contributions to the foundations of calculus were marred by priority
disputes with Leibniz. Newton was appointed to the Lucasian chair at Cambridge
at the age of 27. In 1705, two years after becoming president of the Royal So-
ciety (a position to which he was re-elected each year until his death), Newton
was knighted by Queen Anne; he was the first scientist to be honoured in this
way. Newton’s Philosophiae naturalis principia mathematica is one of the most
important scientific books ever written.
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Newton’s method is a simple iteration with g(x) = = — f(z)/f'(z).
Its geometric interpretation is illustrated in Figure 1.5: the tangent to
the curve y = f(x) at the point (xx, f(zk)) is the line with the equation
y— f(zr) = f'(xr)(z — x); it meets the x-axis at the point (zx+1,0).

Ay

.‘_.' .o
\_/.IQ X1 Zo

Fig. 1.5. Newton’s method.

We could apply Theorem 1.5 to prove the convergence of this iteration,
but since generally it converges much faster than ordinary relaxation it
is better to apply a special form of proof. First, however, we give a
formal definition of quadratic convergence.

Definition 1.7 Suppose that & = limy_, o, x. We say that the sequence
(xk) converges to & with at least order q > 1, if there exist a sequence
(ex) of positive real numbers converging to 0, and p > 0, such that
€
lor — €| <en, k=0,1,2,..., and lim 2L — 0 (1.21)

k—oo 82

If (1.21) holds with €, = |z — &| for k = 0,1,2,..., then the sequence
(zk) is said to converge to £ with order q. In particular, if ¢ = 2, then
we say that the sequence (xy) converges to & quadratically.
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We note that unlike the definition of linear convergence where u was
required to belong to the interval (0, 1), all we demand here is that p > 0.
The reason is simple: when ¢ > 1, (1.21) implies suitably rapid decay of
the sequence (gy) irrespective of the size of p.

Example 1.8 Let ¢ > 1 and ¢ > 1. The sequence (xy) defined by
T = c_qk, k=0,1,2,..., converges to O with order q.

Theorem 1.8 (Convergence of Newton’s method) Suppose that
f s a continuous real-valued function with continuous second derivative
f", defined on the closed interval Is = [ — 6, + 6], 6 > 0, such that
f(&) = 0 and f"(€) # 0. Suppose further that there exists a positive
constant A such that

Va,yels.

If |€ — x| < h, where h is the smaller of 6 and 1/A, then the sequence
(xk) defined by Newton’s method (1.20) converges quadratically to &.

Proof Suppose that |§€ — 2| < h = min{6,1/A}, so that x) € Is. Then,
by Taylor’s Theorem (Theorem A.4), expanding about the point xj, € I,
(€ - fl?k)z

0= F() = flon) + (€ — o) (@) + =0 "), (1:22)

for some 71 between £ and x, and therefore in the interval Is. Recalling
(1.20), this shows that

(& —axx)?f" (nk)
2f" ()

Since [ — x| < %, we have |§€ — x4 1| < %|§ — x|. As we are given that
|€ — x| < h it follows by induction that |¢ — x| < 27%h for all k& > 0;
hence (z) converges to £ as k — o0.

Now, 7 lies between £ and xj, and therefore (7)) also converges to &
as k — oo. Since f’ and f” are continuous on Is, it follows from (1.23)
that

€ — ppr = — (1.23)

lim 121 = 6 ' SO (1.24)

koo |xp — &2 |2f7(€)
which, according to Definition 1.7, implies quadratic convergence of the
sequence () to & with p = [f"(£)/2f"(£)], p € (0, A/2]. [
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The conditions of the theorem implicitly require that f'(£) # 0, for
otherwise the quantity f”(x)/f’'(y) could not be bounded in a neighbour-
hood of £. (See Exercises 6 and 7 for what happens when f'(£) = 0.)

One can show that if f”(£) = 0 and we assume that f(z) has a con-
tinuous third derivative, and require certain quantities to be bounded,
then the convergence is cubic (i.e., convergence with order g = 3).

It is possible to demonstrate that Newton’s method converges over a
wider interval, if we assume something about the signs of the derivatives.

Theorem 1.9 Suppose that the function f satisfies the conditions of
Theorem 1.8 and also that there exists a real number X, X > &, such
that in the interval J = [£, X]| both f" and f" are positive. Then, the
sequence (xy) defined by Newton’s method (1.20) converges quadratically
to & from any starting value xqy in J.

Proof Tt follows from (1.23) that if z; € J, then xp; > £ Moreover,
since f'(x) > 0 on J, f is monotonic increasing on J. As f(£) = 0, it
then follows that f(z) > 0 for £ < x < X. Hence, £ < xpy1 < wy,
k > 0. Since the sequence (xj) is bounded and monotonic decreasing,
it is convergent; let n = limy_,, xr. Clearly, n € J. Further, passing to
the limit £ — oo in (1.20) we have that f(n) = 0. However, & is the only
solution of f(x) =0 in J, so n =&, and the sequence converges to &.
Having shown that the sequence (xj) converges, the fact that it con-
verges quadratically follows as in the proof of Theorem 1.8. L]

We remark that the same result holds for other possible signs of f’
and f” in a suitable interval J. (See Exercise 8.) The interval J does
not have to be bounded; considering, for instance, f(z) = e* — z — 2
from Example 1.7, it is clear that f’(x) and f”(z) are both positive in
the unbounded interval (0,00), and the Newton iteration converges to
the positive solution of the equation f(x) = 0 from any positive starting
value xg.

Note that the definition of quadratic convergence only refers to the
behaviour of the sequence for sufficiently large k. In the same example we
find that the convergence of the Newton iteration from a large positive
value of xg is initially very slow. (See Exercise 3.) The possibility of
this early behaviour is often emphasised by saying that the convergence
of Newton’s method is ultimately quadratic.
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1.5 The secant method

So far we have considered iterations which can be written in the form
Tr+1 = g(xg), k > 0, so that the new value is expressed in terms of the
old one. It is also possible to define an iteration of the form zp4; =
g(xk,xk—1), k > 1, where the new value is expressed in terms of two
previous values. In particular, we shall consider two applications of
this idea, leading to the secant method and the method of bisection,
respectively.

Remark 1.3 We note in passing that one can consider more general
iterative methods of the form

xk—f—l:g(xkaxk—lw"axk—€>7 k:£7£+177

with £ > 1 fized; here, we shall confine ourselves to the simplest case
when £ =1 as this is already sufficiently illuminating.

Using Newton’s method to solve a nonlinear equation f(x) = 0 re-
quires explicit knowledge of the first derivative f’ of the function f.
Unfortunately, in many practical situations f’ is not explicitly available
or it can only be obtained at high computational cost. In such cases,
the value f’(xy) in (1.20) can be approximated by a difference quotient;
that is,

f/(xk) ~ f(xk) - f(xk:—l) .

T — Tk—1

Replacing f'(x) in (1.20) by this difference quotient leads us to the
following definition.

Definition 1.8 The secant method is defined by

LT — Tk—1

flzk) = f(zr-1)

LTk4+1 — Tk — f(:ck) ( > y k= 1,2,3, ceey (125)

where xog and x1 are given starting values. It is tmplicitly assumed here
that f(xk) — f(xk—1) #0 for all k > 1.

The method is illustrated in Figure 1.6. The new iterate zpi; is
obtained from x;_; and x; by drawing the chord joining the points
P(xg—1, f(zr—1)) and Q(zk, f(zk)), and using as x1 the point at which
this chord intersects the z-axis. If x;_1 and x; are close together and f
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R

Fig. 1.6. Secant method.

is differentiable, xy1 is approximately the same as the value supplied
by Newton’s method, which uses the tangent at the point Q.

Theorem 1.10 Suppose that f is a real-valued function, defined and
continuously differentiable on an interval I = [§ — h,& + h|, h > 0,
with centre point £. Suppose further that f(§) = 0, f'(§) # 0. Then,
the sequence (xy) defined by the secant method (1.25) converges at least
linearly to & provided that xo and x1 are sufficiently close to .

Proof Since f'(£) # 0, we may suppose that f/(£) = a > 0; only minor
changes are needed in the proof when f/(£) is negative. Since f’ is
continuous on I, corresponding to any € > 0 we can choose an interval
Is = [€ — 6,& + 6], with 0 < § < h, such that

f'(x) —al<e, wxels. (1.26)

Choosing € = %a we see that

0<2a< fl(z)<2a, zels. (1.27)

From (1.25) and using the Mean Value Theorem (Theorem A.3) together
with the fact that f(£) = 0, we obtain

(zr = &) f (Vi)

Flon (1.28)

E—Thr1 =& — a1k +
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Table 1.3. Comparison of the secant method and Newton’s method for
the solution of €* —x — 2 = 0.

Secant method Newton’s method

0 1.000000 1.000000
1 3.000000 1.163953
2 1.036665 1.146421
3 1.064489 1.146193
4 1.153299 1.146193
5) 1.145745
6 1.146191
7 1.146193

where ¥y is between xj, and &, and ¢y, lies between x, and x;_1. Hence,
if x_1 € Is and x) € Is, then also ¥y € Is and @i € Is. Therefore,

~ ba/4

_ < |g —
€~ el < Je— il |1 - 2o

': 21€ — x4 (1.29)

Thus, xx1+1 € Is and the sequence (x) converges to £ at least linearly,
with rate at least log,,(3/2), provided that x € Is and x; € . 0

In fact, it can be shown that

T C/E kS (1.30)

k—oo [x) — ]9
where p is a positive constant and g = %(1 + /5) =~ 1.6, so that the
convergence of the sequence (zy) to £ is faster than linear, but not as
fast as quadratic. (See Exercise 10.)

This is illustrated in Table 1.3, which compares two iterative methods
for the solution of f(x) = 0 with f: x — e® —x —2; the first is the secant
method, starting from xy = 1, 1 = 3, while the second is Newton’s
method starting from xy = 1.

This experiment shows the faster convergence of Newton’s method,
but it must be remembered that each iteration of Newton’s method
requires the calculation of both f(xy) and f’(xx), while each iteration
of the secant method requires the calculation of f(zy) only (as f(zg_1)
has already been computed). In our examples the computations are
quite trivial, but in a practical situation the calculation of each value of
f(xg) and f'(xx) may demand a substantial amount of work, and then
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each iteration of Newton’s method is likely to involve at least twice as
much work as one iteration of the secant method.

1.6 The bisection method

Suppose that f is a real-valued function defined and continuous on a
bounded closed interval [a,b] of the real line and such that f(§) = 0
for some & € [a,b]. A very simple iterative method for the solution of
the nonlinear equation f(x) = 0 can be constructed by beginning with
an interval [ag,bp] which is known to contain the required solution &
(e.g., one may choose [ag, bg] as the interval [a, b] itself, with ag = a and
bp = b), and successively halving its size.

More precisely, we proceed as follows. Let k > 0, and suppose that it is
known that f(ax) and f(bx) have opposite signs; we then conclude from
Theorem 1.1 that the interval (ag,bx) contains a solution of f(z) = 0.
Consider the midpoint ¢ of the interval (ag, by) defined by

CL = %(ak + bk) , (1.31)

and evaluate f(cx). If f(cg) is zero, then we have located a solution &
of f(x) = 0, and the iteration stops. Else, we define the new interval

(@kt1,bk+1) by

_ [lar,er) i fler)f(br) >0,
(Aks1,bk41) = {(%bk) if Fle) f(bi) <0, (1.32)

and repeat this procedure.

This may at first seem to be a very crude method, but it has some
important advantages. The analysis of convergence is trivial; the size of
the interval containing £ is halved at each iteration, so the sequence (c)
defined by the bisection method converges linearly, with rate p = log, 2.
Even Newton’s method may often converge more slowly than this in the
early stages, when the starting value is far from the desired solution.
Moreover, the convergence analysis assumes only that the function f is
continuous, and requires no bounds on the derivatives, nor even their

1

existence." Once we can find an interval [ag, bg] such that f(ag) and

f(bp) have opposite signs, we can guarantee convergence to a solution,
and that after k iterations the solution ¢ will lie in an interval of length
1 Consider, for example, solving the equation f(z) = 0, where the function f is

defined by (1.2). Even though f is not differentiable at the point = = 1.05, the

bisection method is applicable. It has to be noted, however, that for functions of
this kind it is not always easy to find an interval [ag, bg] in which f changes sign.
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A

Y

Fig. 1.7. Bisection; from the initial interval [ao, bo] the next interval is [ao, col,
but starting from [ao, b the next interval is [cg, bg].

(bg — ag)/2%. The bisection method is therefore very robust, though
Newton’s method will always win once the current iterate is sufficiently
close to €.

If the initial interval [ag, by] contains more than one solution, the limit
of the bisection method will depend on the positions of these solutions.
Figure 1.7 illustrates a possible situation, where [ag, by] contains three
solutions. Since f(cg) has the same sign as f(by) the second interval is
[ag, co], and the sequence (ci) of midpoints defined by (1.31) converges
to the solution &;. If however the initial interval is [ag, b§] the sequence
of midpoints converges to the solution &3.

1.7 Global behaviour

We have already seen how an iteration will often converge to a limit
if the starting value is sufficiently close to that limit. The behaviour
of the iteration, when started from an arbitrary starting value, can be
very complicated. In this section we shall consider two examples. No
theorems will be stated: our aim is simply to illustrate various kinds of
behaviour.
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First consider the simple iteration defined by
Tp+1 =9g(xg), k=0,1,2,...,  where g(x) =az(l —z), (1.33)

which is often known as the logistic equation. We require the constant
a to lie in the range 0 < a < 4, for then if the starting value x( is in
the interval [0, 1], then all members of the sequence () also lie in [0, 1].
The function g has two fixed points: z =0 and x = 1 — 1/a. The fixed
point at 0 is stable if 0 < a < 1, and the fixed point at 1 — 1/a is stable
if 1 < a < 3. The behaviour of the iteration for these values of a is what
might be expected from this information, but for larger values of the
parameter a the behaviour of the sequence (xy) becomes increasingly
complicated.

For example, when a = 3.4 there is no stable fixed point, and from
any starting point the sequence eventually oscillates between two values,
which are 0.45 and 0.84 to two decimal digits. These are the two stable
fixed points of the double iteration

i = 9" @), 9'(0) = 9(g(2)) = a’e(l—x)1—ax(l—x)]. (L34)

When 3 < a < 1+ 4/6, the fixed points of g* are the two fixed points of
g, that is 0 and 1 — 1/a, and also

%(1+%i%[a2—2a—3]1/2>. (1.35)
This behaviour is known as a stable two-cycle (see Exercise 12).

When a > 1+ /6 all the fixed points of g* are unstable. For example,
when a = 3.5 all sequences (z) defined by (1.33) tend to a stable 4-cycle,
taking successive values 0.50, 0.87, 0.38 and 0.83.

For larger values of the parameter a the sequences become chaotic.
For example, when a = 3.99 there are no stable fixed points or limit-
cycles, and the members of any sequence appear random. In fact it can
be shown that for such values of a the members of the sequence are
dense in a subinterval of [0, 1]: there exist real numbers a and 3, a < 3,
such that any subinterval of («a, (), however small, contains an infinite
subsequence of (zy). For the value a = 3.99 the maximal interval (a, )
is (0.00995,0.99750) to five decimal digits. Starting from zy = 0.75 we
find that the interval (0.70,0.71), for example, contains the subsequence

165 L1645 L454, L8801, L812y - - - - (1-36)

The sequence does not show any apparent regular behaviour. The cal-
culation is extremely sensitive: if we replace x¢ by xg + dxg, and write
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Fig. 1.8. Global behaviour of Newton’s method.

x, + Oz for the resulting perturbed value of zg, it is easy to see that
0xkr1 = a(l — 2x)dxy

provided that the changes dxj are so small that a(6z;)? can be ig-
nored. With zo = 0.75 as above we find from the same calculation that
8x812/0x0 is about 10231, so that to determine xg;2 with reasonable ac-
curacy it is necessary to carry through the whole calculation using 250
decimal digits.

Our second example, of more practical importance, is of Newton’s
method applied to a function f with several zeros. The example is

fla) = z(a® = 1)(z - 3) exp(—5 (2 — 1)*); (1.37)

the graph of the function is shown in Figure 1.8. The function has zeros
at —1, 0, 1 and 3. The sequence generated by the Newton iteration will
converge to one of these solutions if the starting value is fairly close to it.
Moreover, the geometric interpretation of the iteration shows that if the
starting point is sufficiently large in absolute value the iteration diverges
rapidly to oo; the iteration behaves as if the function had a zero at
infinity, and the sequence can be loosely described as ‘converging to oo’.
With this interpretation some numerical experimentation soon shows
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that from any starting value Newton’s method eventually converges to a
solution, which might be +00. However, it is certainly not true that the
sequence converges to the solution closest to the starting point; indeed,
if this were true, no sequence could converge to co. It is easy to see why
the behaviour is much more complicated than this.

The Newton iteration converges to the solution at 0 from any point in
the interval (—0.327,0.445). As we see from Figure 1.8, the iteration will
converge exactly to 0 in one iteration if we start from the x-coordinate
of any of the points a1, as and ag; at each of these three points the
tangent to the curve passes through the origin. Since f is continuous,
this means that there is an open interval surrounding each of these points
from which the Newton iteration will converge to 0. The maximal such
intervals are (—1.555, —1.487), (1.735,1.817) and (3.514, 3.529) to three
decimal digits. In the same way, there are several points at which the
tangent to the curve passes through the point (A;,0), where A; is the
x-coordinate of the point a;. Starting from one of these points, the
Newton iteration will evidently converge exactly to the solution at 0 in
two steps; surrounding each of these points there is an open interval
from which the iteration will converge to 0.

Now suppose we define the sets 5,,, m = —1,0,1, 3, 0o, —o0, where
S, consists of those points from which the Newton iteration converges
to the zero at m. Then, an extension of the above argument shows
that each of the sets 5, is the union of an infinite number of disjoint
open intervals. The remarkable property of these sets is that, if £ is a
boundary point of one of the sets .S,,, then it is also a boundary point of
all the other sets as well. This means that any neighbourhood of such a
point &, however small, contains an infinite number of members of each
of the sets S,,. For example, we have seen that the iteration starting
from any point in the interval (—0.327,0.445) converges to 0. We find
that the end of this interval lies between 0.4457855 and 0.4457860; Table
1.4 shows the limits of various Newton iterations starting from points
near this boundary. Each of these points is, of course, itself surrounded
by an open interval which gives the same limit.

1.8 Notes

Theorem 1.2 is a special case of Brouwer’s Fixed Point Theorem. Luitzen
Egbertus Jan Brouwer (1881-1966) was professor of set theory, function
theory and axiomatics at the University of Amsterdam, and made major
contributions to topology. Brouwer was a mathematical genius with
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Table 1.4. Limit of Newton’s method near a boundary point.

X0 Limit
0.4457840 0
0.4457845 0
0.4457850 0
0.4457855 0
0.4457860 1
0.4457865 —00
0.4457870 —1
0.4457875 -1
0.4457880 —00

0.4457885 —00
0.4457890 ~+00
0.4457895 3
0.4457900 1

strong mystical and philosophical leanings. For an historical overview of
Brouwer’s life and work we refer to the recent book of Dirk Van Dalen,
Muystic, Geometer, and Intuitionist. The Life of L.E.J. Brouwer: the
Dawning Revolution, Clarendon Press, Oxford, 1999.

The Contraction Mapping Theorem, as stated here, is a simplified ver-
sion of Banach’s fixed point theorem. Stefan Banach! founded modern
functional analysis and made outstanding contributions to the theory
of topological vector spaces, measure theory, integration, the theory of
sets, and orthogonal series. For an inspiring account of Banach’s life
and times, see R. Kaluza, Through the Eyes of a Reporter: the Life of
Stefan Banach, Birkhauser, Boston, MA, 1996.

In our definitions of linear convergence and convergence with order ¢,
we followed Definitions 2.1 and 2.2 in Chapter 4 of

» WALTER GAUTSCHI, Numerical Analysis: an Introduction, Birkhauser,
Boston, MA, 1997.

Exciting surveys of the history of Newton’s method are available in T.
Ypma, Historical development of the Newton—Raphson method, STAM
Rev. 37, 531-551, 1995, H. Goldstine, History of Numerical Analysis
from the Sixteenth through the Nineteenth Century, Springer, New York,
1977; and in Chapter 6 of Jean-Luc Chabert (Editor), A History of Algo-
rithms from the Pebble to the Microchip, Springer, New York, 1999. As

130 March 1892, Krakéw, Austria-Hungary (now in Poland) — 31 August 1945,
Lvov, Ukraine, USSR (now independent).
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is noted in these sources, Newton’s De analysi per aequationes numero
terminorum infinitas, probably dating from mid-1669, is sometimes re-
garded as the historical source of the method, despite the fact that,
surprisingly, there is no trace in this tract of the familiar recurrence re-
lation xgpy1 = xr — f(xk)/f (zr) bearing Newton’s name, nor is there
a mention of the idea of derivative. Instead, the paper contains an ex-
ample of a cubic polynomial whose roots are found by purely algebraic
and rather complicated substitutions. In 1690, Joseph Raphson (1648
1715) in the Preface to his Analysis aequationum universalis describes
his version of Newton’s method as ‘not only, I believe, not of the same
origin, but also, certainly, not with the same development’ as Newton’s
method. Further improvements to the method, and its form as we know
it today, were given by Thomas Simpson in his Fssays in Mathematicks
(1740). Simpson presents it as ‘a new method for the solution of equa-
tions’ using the ‘method of fluxions’, i.e., derivatives. It is argued in
Ypma’s article that Simpson’s contributions to this subject have been
underestimated, and ‘it would seem that the Newton—Raphson—Simpson
method is a designation more nearly representing facts of history of this
method which lurks inside millions of modern computer programs and
is printed with Newton’s name attached in so many textbooks’.

The convergence analysis of Newton’s method was initiated in the
first half of the twentieth century by L.V. Kantorovich.! More recently,
Smale,? Dedieu and Shub,? and others have provided significant insight
into the properties of Newton’s method. A full discussion of the global
behaviour of the logistic equation (1.33), and other examples, will be
found in P.G. Drazin, Nonlinear Systems, Cambridge University Press,
Cambridge, 1992, particularly Chapters 1 and 3.

The secant method is also due to Newton (cf. Section 3 of Ypma’s
paper cited above), and is found in a collection of unpublished notes
termed ‘Newton’s Waste Book’ written around 1665.

In this chapter, we have been concerned with the iterative solution of
equations for a real-valued function of a single real variable. In Chapter
4, we shall discuss the iterative solution of nonlinear systems of equations
L 1.V. Kantorovich, Functional analysis and applied mathematics, Uspekhi Mat.

Nauk 3, 89-185, 1948; English transl., Rep. 1509, National Bureau of Standards,

Washington, DC, 1952.

2 Steve Smale, Newton’s method estimates from data at one point, in The Merging
of Disciplines: New Directions in Pure, Applied and Computational Mathematics,

R. Ewing, K. Gross, C. Martin, Eds., Springer, New York, 185-196, 1986.

3 Jean-Pierre Dedieu and Michael Shub, Multihomogeneous Newton methods, Math.
Comput. 69 (231), 1071-1098, 2000.
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of the form f(x) = 0 where f: R — R". There, corresponding to the
case of n = 2, we shall say more about the solution of equations of the
form f(z) = 0 where f is a complex-valued function of a single complex
variable z.

This chapter has been confined to generally applicable iterative meth-
ods for the solution of a single nonlinear equation of the form f(z) =0
for a real-valued function f of a single real variable. In particular, we
have not discussed specialised methods for the solution of polynomial
equations or the various techniques for locating the roots of polynomi-
als in the complex plane and on the real line (by Budan and Fourier,
Descartes, Hurwitz, Lobachevskii, Newton, Schur and others), although
in Chapter 5 we shall briefly touch on one such polynomial root-finding
method due to Sturm.! For a historical survey of the solution of polyno-
mial equations and a review of recent advances in this field, we refer to
the article of Victor Pan, Solving a polynomial equation: some history
and recent progress, SIAM Rev. 39, 187-220, 1997.

Exercises

1.1 The iteration defined by x4 = %(a:i + ¢), where 0 < ¢ < 1,
has two fixed points &7, &, where 0 < & < 1 < &. Show that

$k+1—§1:%($k+fl)($k—§1)7 k207172a"'7

and deduce that limy_ .z = & if 0 < 29 < &. How does the
iteration behave for other values of xo?

1.2 Define the function g by ¢(0) = 0, g(z) = —x sin®(1/z) for
0 < z < 1. Show that g is continuous, and that 0 is the only
fixed point of ¢ in the interval [0, 1]. By considering the iteration
Tnt1 = g(xzyn), n =0,1,2,..., starting, first from xg = 1/(kn),
and then from z¢g = 2/((2k 4+ 1)7), where k is an integer, show
that according to Definition 1.3 the critical point is neither sta-
ble nor unstable.

1.3 Newton’s method is applied to the solution of

et —xr—2=0.

L For further details in this direction, we refer to M.A. Jenkins and J.F. Traub,
A three-stage algorithm for real polynomials using quadratic iterations, STAM J.
Numer. Anal. 7, 545-566, 1970, A.S. Householder, The Numerical Treatment of
a Single Nonlinear Equation, McGraw—Hill, New York, 1970, and A. Ralston and
P. Rabinowitz, A First Course in Numerical Analysis, Second Edition, McGraw—
Hill, New York, 1978.
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1.4

1.5

1.6

1 Solution of equations by iteration

Show that if the starting value is positive, the iteration converges
to the positive solution, and if the starting value is negative it
converges to the negative solution. Obtain approximate expres-
sions for x; if (i) 2o = 100 and (ii) o = —100, and describe the
subsequent behaviour of the iteration. About how many iter-
ations would be required to obtain the solution to six decimal
digits in these two cases?

Consider the iteration

Thi1 = T — [f (zx)]?
[+ f(2r) — f(an)

for the solution of f(x) = 0. Explain the connection with New-

k=0,1,2,...,

ton’s method, and show that (zj) converges quadratically if xg
is sufficiently close to the solution. Apply this method to the
same example as in Example 1.7, f(z) = e* — z — 2, and verify
quadratic convergence beginning from xy = 1. Experiment with
calculations beginning from xy = 10 and from xzy = —10, and
account for their behaviour.

It is sometimes said that Newton’s method converges quadrati-
cally, and therefore in the successive approximations to the so-
lution the number of correct digits doubles each time. Explain
why this is not generally correct. Suppose that f”(z) is defined
and continuous in a neighbourhood of £ and that xzj agrees with
the solution £ to m decimal digits; give an estimate of the num-
ber of correct decimal digits in 1.

[llustrate your estimate by using Newton’s method to deter-
mine the positive zero of f(x) = e* — z — 1.000000005, which is
close to 0.0001; use o = 0.0005.

Suppose that f(§) = f'(¢€) = 0, so that f has a double root at &,
and that f” is defined and continuous in a neighbourhood of &.
If (x1) is a sequence obtained by Newton’s method, show that

_ 2 r1 "

where 1 and i both lie between ¢ and xj. Suppose, further,
that 0 < m < |f"(z)| < M for all x in the interval [{ — 6,& + ]
for some 6 > 0, where M < 2m; show that if x( lies in this
interval the iteration converges to &, and that convergence is
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1.8

1.9

1.10
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linear, with rate log;;2. Verify this conclusion by finding the
solution of e = 1 + x, beginning from zy = 1.

Extend the result of the previous exercise to a case where f has

a triple root at £, so that f(§) = f'(¢) = f"(§) = 0.

Suppose that the function f has a continuous second derivative,
that f(¢) = 0, and that in the interval [X, ¢], with X < &,
f'(x) > 0 and f”(x) < 0. Show that the Newton iteration,
starting from any xg in [X, ¢], converges to &.
The secant method is used to determine solutions of the equation
22 —1 = 0. Starting from o = 1 + ¢, 1 = —1 + ¢, show that
Ty = %6—}—0(62), and determine x3, x4 and x5, neglecting terms
of order O(g?). Explain why, at least for sufficiently small values
of &, the sequence (z) converges to the solution —1.

Repeat the calculation with xy and x; interchanged, so that
ro = —1+4+ ¢ and x1 = 1 4 ¢, and show that the sequence now
converges to the solution 1.

Write the secant iteration in the form
oy, f(rr—1) — vp—1 f(7p)
f(xr—1) — f(zk)
Supposing that f has a continuous second derivative in a neigh-

bourhood of the solution & of f(z) =0, and that f'(£) > 0 and
(&) > 0, define

Tps1 = . k=1,2,3,....

Lk+1 —5

zr — &) (xp—1 — &)’

where z;11 has been expressed in terms of x; and zx_;. Find

ok, Tp—1) = (

an expression for
Y(wp-1) = lim_p(zk, Th-1),
T —E

and then determine lim,, ,_.¢ % (zr—1). Deduce that

lim  @(rg,zr-1) = f7(€)/21(£) .

T, Tp—1—E&
Now assume that

lim [Zre1 — & =A

k—oo |Tf — &[4

Show that ¢ — 1 — 1/¢ = 0, and hence that ¢ = (1 + /5).
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1.11

1.12

1 Solution of equations by iteration

Deduce finally that

foy e =€l _ (f”(&) )"/ e
2/(€) |

k—oo |x) — &
A variant of the secant method defines two sequences uy and

vk such that all the values f(ug), £k =0,1,2,..., have one sign,
and all the values f(vg), £k =0,1,2,..., have the opposite sign.
From the numbers u;, and vy the secant formula is used to define

_ ukf(v) — v f (ur)
flog) = flug)

we define ugy1 = wg, vpr1 = vg if f(wg) has the same sign as

k=20,1,2,...;

f(ug), and otherwise ug11 = ug, vgr1 = wg. Suppose that f”
is defined and continuous on the interval [ug, vg], and that, for
some K, f” has constant sign in [ug,vk]. Explain, graphically
or otherwise, why either uy = ug for all £k > K, or vy = vg
for all kK > K. Deduce that the method converges linearly, and
determine the asymptotic rate of convergence; explain clearly
what you mean by convergence of this method. What advan-
tages, if any, do you think this method has compared with the
secant method of Definition 1.87
A two-cycle of the iteration defined by the function g is a pair
of distinct numbers a,b such that b = g(a) and a = g(b). Use
the fact that a and b are fixed points of the iteration defined by
the function h(z) = g(g(z)) to give a definition of stability for
a two-cycle. Show that if |¢'(a) ¢’(b)| < 1, then the two-cycle is
stable, and that if |¢'(a) ¢’(b)| > 1 the two-cycle is not stable.

Show that if a,b is a two-cycle for Newton’s method for the
function f, and if | f(a)f(b)f"(a)f"(b)| < [f'(a)f'(b)]?, then the
two-cycle is stable.

Show that Newton’s method for the solution of f(z) = 0 with

fro—az(z?—1)

has a two-cycle of the form a, —a, and find the value of a; is this
two-cycle stable?



