Last updated: Thursday 24th February, 2022 at 13:41.

Written assignment #2

Problem 1. Let $a, b \in \mathbb{R}$, with b > 0. An algorithm for division (i.e., for computing a/b) on early computers is based on the following idea:

First, compute $b^{-1} = 1/b$ by applying Newton's method to the function f(x) = b - 1/x. Afterwards, form the product $a/b = a \cdot b^{-1}$.

In this problem we'll work out the details of this idea:

1. Show that the Newton iteration is equivalent to the iteration:

$$x_{n+1} = x_n(2 - bx_n), \qquad n \ge 0.$$
 (1)

- 2. Prove that this iteration converges if and only if $0 < x_0 < 2/b$.
- 3. Make a plot (using matplotlib) and give an explanation which shows why this condition makes sense.
- 4. Implement this iteration and use it to compute $b^{-1} = 1/3$.

Problem 2. Let f be a twice continuously differentiable function $(f \in C^2)$. We can assume that f is C^2 on all of \mathbb{R} for simplicity. Let $\xi \in \mathbb{R}$ such that $f(\xi) = f'(\xi) = 0$. That is, f has a *double root* (or a *root of multiplicity two*) at ξ :

- 1. Show that in this case Newton's method is only linear convergent instead of quadratically convergent. *Hint*: study the proof of Newton's method (see first chapter of Süli, linked from the course homepage under the schedule) and use the mean value theorem.
- 2. Show that if the Newton iteration is replaced with:

$$x_{n+1} = x_n - 2\frac{f(x_n)}{f'(x_n)}$$
(2)

quadratic convergence is recovered.