Written assignment \#4

Do only one of the two options for Problem 1.
Problem 1 (option 1). Let $x_{0}<x_{1}, f \in C^{1}\left(\left[x_{0}, x_{1}\right]\right)$, and let $p \in \mathbb{P}_{3}$ be a cubic polynomial such that:

$$
\begin{equation*}
p^{(i)}\left(x_{j}\right)=f^{(i)}\left(x_{j}\right), \quad i=0,1, \quad j=0,1 . \tag{1}
\end{equation*}
$$

Show that p exists and is unique. (Hint: for uniqueness, assume that there are two possibilities: $p, q \in \mathbb{P}_{3}$ such that $p \neq q$. What can you say about the roots of $p-q$?)

Problem 1 (option 2). Prenter: Problem 1, Page 56.

Problem 2. Prenter: Problem 3, Page 56.

Problem 3. Prenter: Problem 4, Page 60.

Problem 4. Consider the quintic Hermite interpolation problem on $\left[x_{0}, x_{1}\right]$ for the function $f(x)=x^{8}-1$. That is, find $p(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3}+\alpha_{4} x^{4}+\alpha_{5} x^{5}$ such that $p\left(x_{i}\right)=f\left(x_{i}\right)$, $p^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right)$, and $p^{\prime \prime}\left(x_{i}\right)=f^{\prime \prime}\left(x_{i}\right)(i=0,1)$:

- Compute $p(x)$ by solving the "Vandermonde system" for this interpolation problem (i.e., solving $\boldsymbol{V} \boldsymbol{\alpha}=\boldsymbol{f}$ for $\boldsymbol{\alpha}$ and write p in the monomial basis).
- Compute $p(x)$ in the cardinal basis. (Hint: use the result of part (b) of Problem 3 in this homework).
- Estimate $\max _{x_{0} \leq x \leq x_{1}}|f(x)-p(x)|$. Let $x_{0}=0$ and $x_{1}=h$, and rewrite expression in terms of h. Do the same but with $x_{0}=1$ and $x_{1}=1+h$. As $h \rightarrow 0$, which expression goes to zero faster? What can you conclude?
- Let $p(x)$ be the degree 3 Lagrange interpolant for this problem (with uniformly spaced nodes). Solve the previous problem but for this choice of p. What do you observe and what can you conclude?

