
Fast construction of efficient cut cell quadratures

Samuel F. Potter∗

July 31, 2025

Abstract

We survey existing optimization-based algorithms for computing efficient cut cell quadratures in two
and three dimensions. We consider the convex geometry of the optimization problems being solved and
conditions under which positive quadratures are obtained. Focusing on level set domains sampled with
a uniform background grid, we evaluate in turn algorithms based on least squares, Steinitz elimination,
nonnegative least squares, basis pursuit, linear programming, and Gauss-Newton iteration—these meth-
ods form a quadrature toolbox, which can be combined in different ways. We find three particularly
effective methods for generating rules. First, we use Xiao and Gimbutas’ method for node elimination to
eliminate nodes from nonnegative least squares quadratures. Second, we find that it is possible to extract
a warm start for Gauss-Newton iteration from the first primal iterate of the primal-dual iteration used to
solve Ryu and Boyd’s linear program. Third, we find that the first dual variable can be immediately used
to produce a warm start for Gauss-Newton. By interpreting this dual variable as the vector rejection of
the Ryu-Boyd residual function with respect to the polynomial space being integrated, we see that in 1D
this is the same as initializing Gauss-Newton with the local minima of a Legendre polynomial which, in
turn, are asymptotic to the Gauss-Legendre abscissae for large degree. Numerical results are presented.

1 Introduction

In 1D, Gaussian quadrature is the method of choice for integrating general, smooth functions. In higher
dimensions, a variety of Gaussian—or Gauss-like (i.e., “efficient”)—rules have been developed, typically for
canonical domains (squares, disks, triangles, etc.). For more complicated domains, some combination of
mapping and decomposition (i.e., meshing) are used to combine simple, canonical quadrature rules into
composite ones. On the other hand, certain simulation methods like the cut finite element method [5]
and other immersed methods superimpose regular background meshes on top of unstructured domains,
computing moments over unstructured cut cells. As it has long been recognized that finite element assembly
is best accomplish through the use of quadrature rules, there is a recognized need for efficient quadrature
rules on cut cells. Beyond this need, the ability to quickly and accurately integrate arbitrary smooth or
analytic functions on unstructured geometry is of manifestly evident utility. This work collects results from
the literature on using numerical optimization to compute such quadrature rules, presents several new fast
algorithms, and outlines some directions for further research.

1.1 Related work

We give a high-level overview of existing successful algorithms for quadrature generation which use some
form of numerical optimization or numerical linear algebra.

∗sam@mcneel.com — Robert McNeel & Associates

1

sam@mcneel.com

Huybrechs’ accurate equispaced quadratures. Early work on using numerical methods to design
special quadratures was done by Huybrechs [15]. In this work, it was shown that stable quadratures with
equispaced nodes (or a subset thereof) can be designed for the interval ra, bs Ď R by solving least squares and
nonnegative least squares problems. Let x1 ă ¨ ¨ ¨ ă xn be an equispaced grid such that x1 “ a and xn “ b
and let Pm being the polynomial space being integrated. Huybrechs shows that there exists some N “ Opm2q

such that for all n ě N , the least squares quadrature (see Section 3.2) has positive weights, providing a fast
algorithm for computing these weights which exploits properties of polynomials which are orthogonal with
respect to the discrete uniform measure supported on the equispaced grid. He also presents some preliminary
results showing that the nonnegative least squares quadrature (see Section 3.4) computed on a grid with
Opm2q nodes produces a positive quadrature with m` 1 nonzero weights, where the space being integrated
is Pm. Huybrechs uses MATLAB’s implementation of nonnegative least squares (lsqnonneg), which uses
Lawson and Hanson’s active set method [18] but does not explore the algorithmic details further.

Vioreanu-Rokhlin quadrature. If Ω Ď C is compact and convex and V is a finite-dimensional subspace
of L2pΩq, Vioreanu and Rokhlin showed that the eigenvalues of the complex multiplication operator Mx`iy :
V Ñ L2pΩq lie within Ω, providing numerical evidence that these eigenvalues are a reasonable warm start for
a nonlinear rootfinder applied to the moment-matching equations [25]. If Ω possesses any symmetries, the
eigenvalues of the multiplication operator have the same symmetries. After the eigenvalues are computed,
quadrature weights are computed using least squares, and the subsequent quadrature is optimized by applying
Gauss-Newton to the moment-matching equations (any symmetries that might exist in the eigenvalues are
not enforced). Unfortunately, if Ω is nonconvex, the eigenvalues may not lie within Ω, somewhat limiting
the applicability of the method to canonical two-dimensional domains which are convex or nearly convex.
The method also has trouble generating quadratures for domains with continuous symmetry groups. We
note that the connection between quadrature and the multiplication operator, along with extensions of these
ideas to higher dimenions, is explained in the work of Collowald and Hubert [7].

Ryu-Boyd quadrature. Ryu and Boyd explored using linear programming to design positive quadra-
tures [22]. They formulate the problem as an infinite-dimensional linear program (LP) over a measure space,
and produce a finite-dimensional LP by approximating the continuous measures with discrete measures.
They prove that the infinite-dimensional LP recovers Gaussian quadratures on the interval in one dimension.
Practically speaking, they lay down a regular grid of quadrature nodes inside Ω and solve an LP whose primal
variables are the quadrature weights at each node. The LP has nonnegativity constraints enforcing positivity
and equality constraints ensuring that the polynomial space is integrated. The choice of cost function for the
LP is open-ended and has a dramatic effect on the type of quadrature produced—they illustrate the effect
of different choices with numerical examples. Once the LP is solved, the quadrature must be extracted and
further optimized. The strength of the method is its adaptability to different integration domains. They do
not consider algorithmic details or carry out performance studies—we consider this method in more detail
in Section 3.7 and show how it can be made efficient in Section 4.

Xiao-Gimbutas quadrature. The goal of the work by Xiao and Gimbutas [27] is to develop an algorithm
for computing moment-matched (see Section 2.3) positive quadratures on canonical domains which have
nearly the minimum number of nodes possible. In summary, they start by creating a quadrature for the
domain through some combination of mapping and decomposition, where known positive quadratures are
used for each of the resulting subdomains. Optionally, they explicitly enforce any symmetries of the domain
that are desired in the quadrature, reducing the number of variables in the moment-matching equations. To
create a warm start for a Gauss-Newton iteration, they select a minimal subset of the nodes of the mapped
and decomposed quadrature using a rank-revealing QR decomposition, along the lines of what is suggested in
Martinsson et al. [19]. They then proceed to solve the moment-matching equations and eliminate the “least
significant” node (see Section 3.8) one at a time, using recursive backtracking to search over all sequences
of eliminated nodes until a maximally efficient quadrature is found. In this way, they are able to compute
very nearly optimal quadratures, although the cost of their algorithm presumably is quite high (they do

2

not report timing statistics). The goal of their work is very different: they seek nearly optimal quadratures
which are usable on standard mesh elements (e.g. triangles, tetrahedra, quadrilaterals, etc.), and are content
with paying a high upfront cost.

Other quadratures based on numerical optimization. Thiagarajan and Shapiro solve the moment
matching equations with a fixed grid using a QR decomposition [24]. Saye gave an algorithm for recursively
constructing mapped tensor product Gauss rules on cut cells defined as the region bounded by the graph of
a function, specifically for use in a discontinuous Galerkin simulation [23]. Glaubitz considers basis pursuit
and least squares quadratures for use with experimental data, typically high-dimensional; some results on the
existence and positivity of these quadratures are proved [11, 12, 13]. Other similar studies on generating high-
dimensional quadratures using methods from optimization have been carried out [17, 16]. With monte carlo
applications in mind, Elefante solves a sequence of nonnegative least squares problems on low-discrepancy
point sets until a small enough error in the moment-matching equations is achieved [9]. Bui et al. explore
using moment-matched cut cell quadratures for elastoplastic simulations using the finite cell method [4].
Garhuom et al. uses nonnegative least squares to prune adaptive quadtree rules [10].

2 Preliminaries

2.1 Notation and basic definitions

Throughout, we let d ą 0 denote the dimension of the ambient space Rd. A multi-index is written α “

pα1, . . . , αdq, where αi ě 0 for each i “ 1, . . . , d. If x “ px1, . . . , xdq P Rd, a d-variate monomial is written:

xα “ xα1
1 ¨ ¨ ¨xαd

d . (1)

We write |α| “ α1 ` ¨ ¨ ¨ `αd ě 0 for the degree of a multi-index. Let I be an index set and for each i P I, let
αi be a multi-index and let ci P R be a coefficient. The total degree of the polynomial ppxq “

ř

iPI cix
αi is:

deg p “ max
iPI

|αi|. (2)

We note that the partial degree of p is defined to be maxi maxjpαiqj , which coincides with spaces of tensor
product polynomials. We will restrict our attention to spaces of polynomials up to a given total degree on
account of their importance in approximation. The set of d-variate polynomials of total degree at most N is
denoted:

Pd
N “ span txα : |α| ď Nu , (3)

where dimPd
N “

`

N`d
d

˘

. Note that the dimensions of P2
N and P3

N are the triangular and tetrahedral numbers.
Throughout, we let m “ dimPd

N .

2.2 Background on quadrature

Let n ą 0 be the order of a quadrature rule with weights w1, . . . , wn P Rz t0u and nodes x1, . . . ,xn P Rd.
Define the operator:

Q rf s “

n
ÿ

i“1

wifpxiq, (4)

where f is a scalar-valued function defined on Rd. Let Ω Ď Rd and let µ : Ω Ñ p0,8q be a density. If Q rf s

is a good approximation of
ş

Ω
fpxqµpxqdx, then we call Q a quadrature with respect to the set Ω and the

density µ. The number of degrees of freedom of the quadrature is dofpQq “ pd` 1qn. Although the methods
presented here can be easily adapted to a nonuniform density (or more general measure) µ, we restrict our
attention to µ ” 1 for simplicity and because of its centrality in applications.

3

For d “ 2, 3, we refer to a subset Ω Ď r´1, 1s
d
such that BΩ and Br´1, 1sd overlap nontrivially as a cut

cell. The αth monomial moment on the cut cell Ω is:

Iα “

ż

Ω

xαdx, (5)

where xα “ xα1
1 ¨ ¨ ¨xαd

d . If φ1, . . . , φm form a basis for Pd
N , we define moments in terms of each φi analo-

gously. E.g., the φi moment is the integral
ş

Ω
φipxqdx. If Q rps “

ş

Ω
ppxqdx for all p P Pd

N , then Q integrates

Pd
N . Following Xiao and Gimbutas [27], the efficiency of an order n quadrature that integrates Pd

N is:

effpQq “
dimPd

N

dofpQq
“

m

pd` 1qn
. (6)

Our focus is developing fast algorithms for quickly computing reasonably efficient quadratures. We expect
0 ď effpQq ď 1 to hold, which is indeed the case, although the upper bound is a theorem. Gaussian
quadrature in 1D obtains effpQq, but little about the maximum efficiency of multidimensional quadratures
is known.

Let n ą 0, let x1, . . . , xn be the zeros of the nth Legendre polynomial, and let wi “
ş1

´1
ℓipxqdx, where

ℓipxq is the ith Lagrange basis polynomial determined by the nodes x1, . . . , xn. The corresponding quadrature
Q1 is the order n Gauss-Legendre rule. This quadrature integrates all polynomials in P1

2n´1, hence effpQ1q “

1. Quadratures for rectangles in dimensions greater than one can be obtained by taking tensor products of
Gauss-Legendre rules.

Example 2.1 (efficiency of tensor product Gauss-Legendre quadrature). Let d ą 1 and define the order n
tensor-product Gauss-Legendre quadrature Qd by the formula:

Qd rf s “

n
ÿ

i1“1

¨ ¨ ¨

n
ÿ

id“1

wi1 ¨ ¨ ¨widfpxi1 , . . . , xidq. (7)

This quadrature integrates all monomials xα where maxi αi ď 2n´ 1; hence, it integrates all monomials xα

for which |α| ď 2n´1. To reiterate: the former set of monomials is the set of monomials of partial degree at
most 2n´1, the latter set is Pd

2n´1. The latter is a subset of the former, and, over all possible N , the largest
Pd
N so contained. Consequently, with respect to the total degree, we can see that Qd “over-integrates”.

Since dofpQdq “ p2nqd, and since dimpPd
2n´1q “

`

2n´1`d
d

˘

, we have:

effpQdq “

`

2n´1`d
d

˘

pd` 1qnd
“

2np2n` 1q ¨ ¨ ¨ p2n` d´ 1q

pd` 1qd!nd
“

p2nqd ` ¨ ¨ ¨

pd` 1q!nd
„

2d

pd` 1q!
as n Ñ 8. (8)

This recovers effpQ1q “ 1, and effpQ2q „ 2{3 and effpQ3q „ 1{3. Clearly, effpQdq „ 0 if d Ñ 8 and n Ñ 8

simultaneously.

We generically refer to a quadrature for a known, simple geometry (a canonical domain) with an efficiency
higher than what could otherwise be achieved by “conventional means” as an efficient quadrature. For
d ą 1, very little is known about the maximum achievable efficiency of quadratures for canonical domains,
let alone more exotic ones. If Ω isn’t canonical, a standard procedure for numerical integration is to possibly
decompose Ω into a disjoint union of subdomains, and define each subdomain as the image of a canonical
domain. By using a known quadrature for the preimage of each subdomain and suitably adjusting its weights
we get a mapped quadrature. Even if decomposition can be avoided, mapping can have a deleterious effect
on efficiency.

Example 2.2 (Efficiency of mapped quadratures.). Let Ω be a deformation of the unit square with one side
given by the polynomial hpxq:

Ω “
␣

px, yq P R2 : 0 ď x ď 1 and 0 ď y ď hpxq
(

. (9)

4

Integrating the monomial xpyq over Ω gives:

ż

Ω

xpyqdApx, yq “

ż 1

0

ż 1

0

xppyhpxqqqydydy “:

ż 1

0

ż 1

0

F px, yq. (10)

The polynomial degree with respect to x of F is rpp, qq “ p`pq`1qdeg h while the degree with respect to y is
q. Consequently, to integrate xpyq we can first apply integration by substitution as above and then integrate
over the unit square using a Gauss-Legendre rule. This requires an rrpp, qq{2s-point rule to integrate over
x and a rq{2s-point rule for y; consequently, to integrate each monomial in P2

n, we need a rule with rn{2s

points to integrate in y and rr˚{2s points to integrate in x, where:

r˚ “ max
0ďpďn

rpp, n´ pq. (11)

Denote this rule by Qn,h. Its efficiency satisfies:

effpQn,hq „

ˆ

npn` 1q

2

˙Nˆ

3

4
r˚n

˙

“
2

3
¨

n` 1

max0ďpďn

´

p` pn´ p` 1qdeg h
¯ . (12)

Since the maximum in the denominator is bounded below by pn` 1qdeg h, we have:

effpQn,hq À
2

3

´

deg h
¯´1

. (13)

This recovers effpQ2q „ 2{3 if h is linear, as expected. But we can now see that if h is of even moderate
degree, the efficiency of the rule decays rapidly, resulting in a large number of quadrature points needed to
integrate P2

n exactly.

Of course, we may still do numerical integration accurately enough for some purpose without integrating
the desired polynomial space exactly, and such inexact rules are worthy of consideration (engineering is
replete with such hacks). In this work we eliminate this consideration by endeavoring to integrate the target
space close to machine precision.

The need for native cut cell quadratures. The particular focus of this work is designing quadrature
rules for cut cells, primarily to be used for immersed methods. In this case, an arbitrary segment of the
boundary is restricted to a grid cell, with that subset of the domain to be used as an integration domain.
Basic approximation theory tells us that if the continuity class of the boundary is low, mapped quadrature
is doomed to failure. For example, if hpxq is a polynomial approximating the function ypxq “ |x ´ 1{2| `

1{2 in Example 2.2, it is well known that tens of thousands (if not hundreds of thousands) of coefficients
(e.g., computed in the Chebyshev basis) are needed for a decent approximation. The obvious resolution
to this problem is to further subdivide Ω—that is, to build a mesh on it. But avoiding meshing is the
motivation for choosing an immersed method in the first place. By punting and moving the possibility of
mesh failure elsewhere, we have not solved our original problem, and the promise of the method is unrealized.
Consequently, there is a need to construct native cut cell quadrature rules without recourse to meshing. It
turns out that not only can native quadrature rules be constructed without meshing, they are dramatically
more efficient than the alternative. In particular, we will find that it is straightforward to construct rules
that integrate Pd

n with an efficiency of 1{pd` 1q. With a little work, we can push that efficiency even higher.

2.3 Moment-matched quadratures

Quadratures for non-canonical domains can be generated using numerical optimization to ensure that each
moment is correctly integrated. These moment-matched quadratures are our focus. The approach is quite
general and can be used to design quadratures for a wide variety of function spaces. For simplicity, and since
it is the case of the greatest practical importance, we restrict our attention to Pd

N .

5

Definition 2.1. The moment-matching equations for the quadrature Q with weights w1, . . . , wn and nodes
x1, . . . ,xn on Ω with respect to Pd

N “ span tφ1, . . . , φmu are:

Ii “ Q rφis “

n
ÿ

j“1

wjφipxjq, i “ 1, . . . ,m. (14)

Letting w “ pw1, . . . , wnq and X “ px1, . . . ,xnq P pRdq
n
, the residual function for the moment-matching

equations is F : Rn ˆ Rdn Ñ Rm where F ipw,Xq “ Ii ´ Q rφis.

A quadrature integrates Pd
N if the moment-matching equations are satisfied. If we fix X and find w that

satisfies (14), then the moment-matching equations are linear in w. Defining the matrix

V “

»

—

–

φ1px1q ¨ ¨ ¨ φmpx1q

...
. . .

...
φ1pxnq ¨ ¨ ¨ φmpxnq

fi

ffi

fl

P Rnˆm, (15)

this linear system reads
V Jw “ I. (16)

If we seek a pair pw,Xq that simultaneously satisfies (14), then the system is nonlinear, and the computation
of the Jacobian of the residual function becomes important. It reads:

DF “
“

DwF DXF
‰

“

»

—

–

φ1px1q ¨ ¨ ¨ φ1pxnq w1Dφ1px1q ¨ ¨ ¨ wnDφ1pxnq

...
. . .

...
...

. . .
...

φmpx1q ¨ ¨ ¨ φmpxnq w1Dφmpx1q ¨ ¨ ¨ wnDφmpxnq

fi

ffi

fl

, (17)

where Dφi “
“

Bφi{Bx1 ¨ ¨ ¨ Bφi{Bxd
‰

P R1ˆd. There are a variety of approaches that have been taken
to solve the moment-matching equations. Our work combines and builds on several of them, which we
recapitulate in the following sections.

2.4 Existence of positive quadratures

Although the task of finding a stable, positive quadrature appears daunting at first sight, Martinsson et
al. [19] showed that a stable but not necessarily positive quadrature exists for a set of bounded functions
where

1) the integration region is taken to be essentially any set,
2) the quadrature has the same number of nodes as the number of functions being integrated,
3) and the quadrature can be computed from a suitable discretization of the set using a rank-revealing

QR decomposition [14].
Such a quadrature is often a reasonable choice. Nevertheless, we seek a quadrature with positive weights
since they are expected by practitioners and are (arguably) more stable.

Theorem 1. Let Ω Ď Rd be a compact set, let m ą 0, let φ1, . . . , φm : Ω Ñ R be a set of m linearly
independent functions, and let P “ span tφ1, . . . , φmu. Then, there exists a positive quadrature with order
not greater than m, with nodes in Ω, and which integrates P.

Proof. This is a specialization of Tchakaloff’s theorem to the present setting [?]. Davis provided a construc-
tive proof of Tchakaloff’s theorem [8]. We provide a similar constructive proof adapted to this setting in
Sections 3.2 and 3.3.

In the context of this paper, we will refer to Theorem 1 as Tchakaloff’s theorem, bearing in mind that the
actual theorem of Tchakaloff is more general.

In the foregoing discussion, we consider quadratures which are positive, minimal (satisfy Tchakaloff’s
theorem), and exact—i.e., which exactly satisfy the moment-matching equations for the quadrature. If we
relax the last requirement, the existence proof is simpler.

6

Theorem 2. Let X Ď Rd be point set and let n “ |X| ă 8. Let P “ span tφ1, . . . , φmu. Let V “
“

φ1pXq ¨ ¨ ¨ φmpXq
‰

and let I “ p
ş

Ω
φ1pxqdx, . . . ,

ş

Ω
φmpxqdxq. Assume that w˚ is an optimum of the

minimization problem:

minimize
›

›

›
V Jw ´ I

›

›

›

2

subject to w ě 0.
(18)

Then, there exists w‹ ě 0 such that }V Jw‹ ´ I}2 ď }V Jw˚ ´ I}2 and cardpw‹q ď d.

Proof. First, we recall Caratheodory’s theorem, which states that any point in the convex hull of a set in Rd

can be written as a convex combination of d` 1 points in the original set [2]; equivalently, any point in the
conic hull of a set in Rd be written as the conic combination of d points taken from the generating set.

Now, let R˚
“ I ´ V Jw˚. Of course, R˚

‰ 0 in general. Since V Jw˚ “ I ´ R˚, we can see
that I ´ R˚ is a conic combination of the columns of V J; that is, I ´ R˚

P cone tφpx1q, . . . ,φpxnqu.
Then, by Caratheodory’s theorem, I ´ R˚ can be written as a conic combination of at most d points in
tφpx1q, . . . ,φpxnqu. Letw‹ P Rn be the nonnegative vector whose jth component is given by Caratheodory’s
theorem and zero otherwise; consequently, V Jw‹ “ I ´ R˚.

Theorem 2 is not constructive. Caratheodory’s theorem merely indicates that an m-sparse combination of
columns of V J exists, but not how to compute it.

3 Quadrature toolbox

3.1 Discretizing the cut cell

We can view moment matching as a means of constructing a quadrature by finding a discrete measure which
approximates a continuous measure by agreeing exactly on a finite-dimensional function space. Specifically,
for the cut cell Ω, our goal is to approximate the uniform measure on Ω with a discrete measure with positive
weights and with support contained inside Ω:

µnpxq “

n
ÿ

i“1

wiδpx ´ xiq, wi ą 0, xi P Ω, 1 ď i ď n. (19)

so that:
ż

Ω

φjpxqdx “

ż

Ω

φjpxqdµnpxq “

n
ÿ

i“1

wiφjpxiq, 1 ď j ď m, (20)

which is equivalent to the moment-matching equations. It is easier to compute the weights with the nodes
fixed rather than simultaneously choosing both weights and nodes. The algorithms presented in this section
are unified in the sense that they all start by discretizing Ω into a grid of n nodes where n " m and then
computing the weights. The first approach computes a dense quadrature where wi ą 0 for all i, but the
remaining approaches use techniques from sparse optimization to compute a minimal number of nonzero
weights (m ď n), thereby selecting a subset of the original node set.

We do not spend any time on the question of how best to discretize Ω. In our numerical experiments,
we always follow the same procedure:

Algorithm 3.1: Discretize cut cell Ω with a uniform grid

1) Find scalars a1, . . . , ad and b1, . . . , bd such that aj ă bj for each j, such that Ω Ď ra1, b1s ˆ ¨ ¨ ¨ ˆ

rad, bds, and such that the aj ’s are maximized and the bj ’s are minimized. (Find the smallest
bounding box containing Ω.)

2) Map ra1, b1s ˆ rad, bds to r´1, 1sd, denote the mapping by F .
3) Discretize r´1, 1sd into a uniform regular grid with spacing h ą 0.

7

4) Let X be the set of grid nodes contained in F pΩq.

Clearly, following this discretization, we must use the change of variables formula

ż

Ω

φpxqdx “

ż

F ´1pΩq

φpF puqq|DF puq|du “
1

2d

d
ź

j“1

pbj ´ ajq

ż

F ´1pΩq

φpF puqqdu. (21)

when computing moments. Rescaling Ω serves two purposes. Most obviously, it allows a more even dis-
tribution of grid nodes over Ω which avoids issues with tiny sliver cut cells. However, it also improves the
tendency of our choice of residual functions to create Lobatto rules when computing Ryu-Boyd quadratures,
as in Section 4.

Huybrechs makes it clear that a simple uniform discretization is a perfectly reasonable choice on a
one-dimensional interval [15]. Experimentally, how well this works appears to be independent of the cut cell
geometry, provided that the grid is fine enough. Martinsson et al. give strong evidence that this should indeed
be the case [19]. To choose a fine enough grid, we again follow Huybrechs, who determines experimentally
that the number of nodes needed to integrate Pm is Ωpm2q with a small constant. To this end, to integrate
Pd
N , we choose h “ OpN´2q. This results in a grid with ΩpN2dq nodes, albeit with a small constant. This

constant can be adapted to individual cut cells by scaling by volpΩq, which can be computed using the
algorithms in ?? (indeed, for the monomial and Chebyshev bases, we will compute volpΩq as a matter of
course when we set up the moment-matching equations).

It is intuitively obvious that h “ Opn´2q is necessary for a uniform grid. We give a heuristic motivation
now. The density of quadrature points approaches ρpxq “ 1?

1´x2 as n Ñ 8. As a particular instance, we can

consider the Chebyshev nodes xj “ ´ cospπj{nq for j “ 0, 1, . . . , n. Since the nodes are most closely spaced
around the endpoints, we can check what grid spacing h ą 0 is necessary to ensure, e.g., that x0 and x1 can
be resolved—that is, the grid is fine enough that not more than one quadrature node is mapped to the same

uniform grid point upon being quantized. We have x0 “ ´1 and x1 “ ´ cospπ{nq “ ´1 ` π2

2n2 ´ Opn´4q.

Since x1 ´x0 “ π2

2n2 ´Opn´4q, we can see that it is sufficient to take h “ Opn´2q to ensure that a quadrature
on r´1, 1s with limiting density ρ will be sufficiently resolved.

3.2 Least squares quadrature

As we have seen, both Huybrechs [15] and Glaubitz [11] explored the conditions under which solving rect-
angular moment-matching equations with fixed nodes produces positive quadratures. With the nodes fixed,
the optimization problem to solve is:

minimize
1

2

›

›

›
V Jw ´ I

›

›

›

2

2
. (22)

Since we require V to have Θpm2q rows, this is an underdetermined least squares problem.
The minimum norm solution is easily computed using either the QR or LU decomposition [?].

Algorithm 3.2: Compute least squares quadrature

Input : domain Ω Ď Rd, polynomial space P with dimP “ m, moment vector I, discretization of Ω into
uniform grid X containing Opm2q points.
Output : quadrature rule pX,wq that integrates P on Ω.

1) Compute w “ V :I using LU or QR decomposition.

We recall that since (22) is underdetermined, w “ pV J
q:I, where pV J

q: denotes the pseudoinverse of V J.
Since V is a wide matrix with linearly independent rows, pV J

q: “ V pV JV q´1. To use the LU decomposition
to compute the minimum norm solution of (22), we LU factorize V JV . To apply the QR decomposition,
we let V “ QR be the reduced QR decomposition of V , in which case V :

“ QR´J.

8

Theorem 3. Algorithm 3.2 runs in Opm2pd`1qq time.

Proof. This is the case regardless of whether we use the LU or QR decomposition. Since there are Opm2dq

grid points, V has Opm2dq rows and Opmq columns. For the LU decomposition, forming V JV requires
Opm2pd`1qq operations, while subsequently computing the LU factorization of V JV requires only Opm3q.
Once the LU decomposition of V JV is available, computing pV JV q´1I is Opm2q, and multiplying the result
by V is again Opm3q. Hence, the time complexity of computing the least squares quadrature using the LU
decomposition is Opm2pd`1qq since d ě 1. For the QR decomposition, computing the QR decomposition of V
using, e.g., modified Gram-Schmidt, takes Opm2pd`1qq time. Computing R´JI is Opm2q and multiplying the
result by Q is Opm2d`1q. So, solving (22) using a QR decomposition also takes Opm2pd`1qq operations.

The drawback of least squares quadrature is that w will have all nonzero components. That is, the
resulting quadrature will be order Opm2dq. Nevertheless, it occurs later as the initial step when we compute
Ryu-Boyd quadratures (Section 4). As we mentioned earlier, Huybrechs devised an asymptotically faster
method of constructing least squares quadratures on the interval using properties of discrete orthogonal
polynomials. It is unclear whether a similar method could be devised on unstructured domains in two or
greater dimensions.

A natural question is whether least squares quadratures are positive, since they approximate the uniform
measure supported on Ω. The answer is in the affirmative for a fine enough grid. Huybrechs proved a
version of the following theorem in one dimension [15]. The version here is a specialization of a result due
to Glaubitz [12].

Theorem 4. Let d ą 0 and N ě 0. Then, there is an integer n0 ą 0 such that for all n ě n0 a set of points
x1, . . . ,xn exists such that the resulting least squares quadrature is positive.

Proof. Let Ω Ď r´1, 1sd be a cut cell, let n ą 0 be an integer, let h “ 1{n, and define:

Xn “ Ω X

"

t´1,´1 ` h, . . . , 1u `
h

2

*d

. (23)

Let Bx “ ty P Ω : }x ´ y}8 ď h{2u and let hx “ volpBxq. Since Ω “
Ť

xPXn
Bx is disjoint, we have:

volpΩq “
ÿ

xPXn

volpBxq “
ÿ

xPXn

hx. (24)

Next, consider the inner product:
pf, gqXn

“
ÿ

xPXn

hxfpxqgpxq. (25)

Clearly, if fg is Riemann integrable, then this inner product converges to the L2pΩq inner product as
n Ñ 8. Now, let tpiu

m
i“1 be a basis for P such that p1 ” 1, and such that ppi, pjqXn

“ 0 if i ‰ j. Let

V “
“

p1pXnq ¨ ¨ ¨ pmpXnq
‰

. Then:

´

V JV
¯

ij
“ ppi, pjqXn

“ }pi}
2
Xn

δij . (26)

Let H “ diagphxqxPXn and let D “ diag P Rmˆm be a diagonal matrix with diagonal entries given by
Dii “ }pi}

2
Xn

. If we choose w “ HV D´1I, then V Jw “ I since V JHV “ D; that is, the moment-
matching equations are satisfied. We will show that we can choose n large enough to guarantee w ą 0. For
i “ 1, . . . ,m, define:

ci “
pipxq

}pi}2Xn

ppi, p1qL2pΩq . (27)

For a fixed x P Xn, the corresponding quadrature weight can be written:

wx “ hx

m
ÿ

i“1

pipxq
ř

x hxpipxq2

ż

Ω

pipyqdy “ hx

m
ÿ

i“1

ci. (28)

9

For i “ 1, we have c1 “ p1pxq}p1}2L2pΩq
{}p1}2Xn

“ 1 ¨ volpΩq{ volpΩq “ 1. Since ppi, p1qL2pΩq Ñ 0 as n Ñ 8,

for i “ 2, . . . ,m we have ci Ñ 0. Choose ϵ ą 0 satisfying ϵ ă pm´1q´1. For i “ 2, . . . ,m there exist positive
integers N2, . . . , Nm such that for n ě Ni, we have |ci| ă ϵ. So, let N ě maxpN2, . . . , Nmq. Consequently:

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“2

ci

ˇ

ˇ

ˇ

ˇ

ˇ

ď

m
ÿ

i“2

|ci| ă pm´ 1qϵ ă 1, (29)

which, for large enough n, gives:

wx “ hx ¨

˜

1 `

m
ÿ

i“2

ci

¸

ą 0. (30)

Now, to ensure that wx for all x P Xn, choose n to be the maximum for each x in the previous step.
Crucially, although we can see that w Ñ 0, there exists n beyond which w ě 0.

3.3 Steinitz elimination

Once we have a suboptimal quadrature, we may justifiably ask whether there is any way to incrementally
improve the efficiency by eliminating nodes and adjusting weights. If n ą m, we can do this using linear
algebra, eliminating nodes one at a time until n “ m.

Assume an order n ą m positive quadrature exists. Glaubitz shows how to use Steinitz elimination to
reduce an order n quadrature to an order m positive quadrature [11].

Theorem 5. Let d ą 0, N ą 0, and n ě m “ dimPd
N . Let Q be an order n positive quadrature that

integrates Pd
N on a compact domain Ω. Then, there exists an order m positive quadrature that integrates Pd

N .

Proof. Let w and X denote the weights and nodes of Q. Let φ1, . . . , φm be a basis for Pd
N and assume

that the Vandermonde matrix V P Rnˆm defined by V ij “ φjpxiq has full row rank and V J has nontrivial

nullspace. Let v P Rn such that v ‰ 0 and w “ V Jv has at least one positive component. If we let
k “ argmax1ďkďn vj{wj , then vj{wj ą 0 and wi ´ pwj{vjqvi ě 0 for each i with equality obtained if i “ j.

Let δw “ ´pwj{vjqv. Adding V Jδw “ 0 to the moment-matching equations (14) gives V J
pw ` δwq “ I.

If we let I “ pi : 1 ď i ď n and wi ` δwi ą 0q, we can see that the quadrature with weights given by
pwi ` δwi : i P Iq and nodes given by px P X : i P Iq is a positive quadrature with degree at most n´ 1. To
compute a positive quadrature of order m, iterate this argument n´m´ 1 times.

Clearly, the bulk of the work in Steinitz elimination is in computing the nullspace of V J, hence the
algorithm defined by Theorem 5 has the same complexity. For instance, using Gaussian elimination or
a rank-revealing QR decomposition, the complexity is Opm2nq “ Opm2pd`1qq, the same as required by
Algorithm 3.2.

3.4 Nonnegative least squares quadrature

The theorems in Section 2.4 show that if n is large enough, then an order m positive quadrature exists.
Since these proofs are constructive, they could be used as the basis of an algorithm for computing an
efficient positive quadrature. However, what this construction suggests is that given a “dense enough” point
set, we should be able to select a subset of points which together yield an efficient positive quadrature. In
the language of optimization, we could consider the nonnegative least squares problem:

minimize
1

2

›

›

›
V Jw ´ I

›

›

›

2

2

subject to w ě 0,
(31)

whose global optima constitute the polytope tw P Rn : V Jw “ I and w ě 0u. Since there is no unique
minimizer, the choice of algorithm used to solve (31) will bias the selection. Again, if n is large enough,

10

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Figure 1: Two simple examples of NNLS quadratures computed using the Lawson-Hanson algorithm, starting
from a uniform grid restricted to Ω. Left : Ω is the unit disk. Right : Ω is the biunit square with a unit disk
centered at p1, 1q removed. Both quadratures integrate P2

10 (up to numerical roundoff) and have exactly
dimP2

10 “ 66 points, as expected. The moment-matching equations are solved directly in the monomial
basis. In both cases, V has 66 columns and „2,000 rows.

ordinary least squares produces the minimum ℓ2 norm solution (corresponding to a point somewhere in
the interior of the feasible set—more on this later when we turn to linear programming), but Theorem 4
indicates that every component will be nonzero, forcing us to turn to the relatively inefficient Steinitz
elimination process described in Section 3.3.

An suitable algorithm for solving (31) is the active set method due to Lawson and Hanson [18]. To derive
this algorithm, define the Lagrangian of (31):

Lpw,αq “
1

2

›

›

›
V Jw ´ I

›

›

›

2

2
´ αJw. (32)

The Karush-Kuhn-Tucker (KKT) conditions for a constrained local optimum are:

Lwpw,αq “ V
`

V Jw ´ I
˘

´ α “ 0, αJw “ 0, w ě 0, α ď 0. (33)

In rough outline, an active set method for solving (31) chooses an initial iterate w0 and determines the
inactive set J0 “ ti : 1 ď i ď n and pw0qi ą 0u. After computing α0 “ V pV Jw0 ´ Iq, we determine the
maximum component of α0, remove it from I0, and compute w1 by updating the new inactive component
of w0. Continuing in this way, wk and αk are determined for k ą 1, until all Lagrange multipliers are
nonpositive. Occasionally, it is necessary to backtrack to ensure that the constraints are satisfied exactly for
each iteration.

3.5 Accuracy of the Lawson-Hanson algorithm

Lawson and Hanson provide an implementation of an active set method for nonnegative least squares in their
classic textbook on solving least squares problems [18]. At a high level, the algorithm follows the approach
described in Section 3.4.

For bookkeeping, we use “numpy” notation (i.e., 0-indexed “MATLAB notation”), where, for example,
xi:j “ pxi, xi`1, . . . , xj ´1q; and where expressions like A:,:k work as expected. We also consider expressions
with index vector subscripts; e.g., given I “ pi1, ..., inq, we write xI “ pxi1 , . . . , xinq. For an index vector
I Ď rns, we write Ic Ď rns for its complement.

11

Let:
Rk “

´

QJ
k V

J
¯

:|Jk|,Jk

, bk “

´

QJ
k I

¯

:|Jk|
(34)

Note that:
´

QJ
k V

J
¯

|Jk|:,Jk

“ 0pn´|Jk|qˆ|Jk|. (35)

At the kth step, we let Jk Ď rns be the set of inactive indices and compute a new tenative value of wk by
solving the least squares problem on the set of inactive indices Jk:

Rk pwkqJk
“ bk,

pwkqJc
k

“ 0|Jc
k|.

(36)

is solved. If any components of wk are negative, backtracking is used to find the largest step such that
wk ě 0. Afterwards, the Lagrange multiplier is recomputed from:

αk “ V
´

V Jwk ´ I
¯

(37)

If n ą m, the least squares problem (36) will be overdetermined until the last step, when it becomes square.
Lawson and Hanson elect to solve (36) using a QR decomposition. This QR decomposition is updated

and downdated on the fly, with columns being added and removed from the orthogonal basis which spans
some subset of the columns of V J. For clarity, note the following:

1) An index becoming active (being added to the active set) corresponds to a quadrature node being
removed from the rule; equivalently, a column of V J being removed from the basis, and an entry of w
being reset to zero.

2) An index becoming inactive is the same as a new quadrature node being added and an unused column
of V being incorporated into the QR decomposition’s running orthogonal basis.

Columns are added to the orthogonalized basis using a Householder reflector; they are removed using a
Givens rotation. Details of how this is done can be found in their book or elsewhere [?]. Both QJ

k V
J and

QJ
k I are maintained throughout the iteration, where Qk P Rmˆm is the product of all Householder reflectors

and Givens rotations applied throughout. The matrix Qk is not stored explicitly. Consequently, the least
squares problem (36) reduces to an upper triangular system. No additional pivoting is applied for numerical
stability other than what could be regarded as the problem-dependent pivoting induced by the choice of
component to add or remove from the active set at each step.

Lawson and Hanson’s Fortran implementation is available in the public domain. Until recently, it provided
the heavy lifting for scipy.optimize.nnls, although it appears to have been replaced by a simpler Python
implementation. This is unfortunate, because the original Fortran implementation has an important feature
which provides a significant amount of additional stability and accuracy on ill-conditioned problems. In some
cases, we found that this minor change allowed the Lawson-Hanson iteration to converge with a residual five
orders of magnitude smaller than the näıve implementation. To the best of our knowledge, this detail is not
discussed in their book, nor is it explained in a comment in their Fortran implementation. The key detail is
this. At each step, the new vector of Lagrange multipliers is computed from:

pαkqJk
“ 0|Jk|,

pαkqJc
k

“

„

´

QJ
k V

J
¯J

ȷ

Jc
k

QJ
k I,

(38)

The form of (38) allows us to solve for the components of αk as follows:
1) Set pαkqJ :“ 0n.

2) Set pαkqJc :“
´

QJ
k V

J
k

¯J

p|J|`1q:

´

QJ
k I

¯

p|J|`1q:
.

12

We can see that näıvely computing αk from (37) requires us to first compute the residual I ´ V Jwk. As
k increases and the residual reduces in magnitude, this residual computation can sometimes introduce an
artificially large “error floor” as we begin “approximating zero” using the differences of moderately numbers.
On the other hand, with (38), components of αk are directly set to zero if they are active, or computed using
a triangular solve. In the latter case, the triangular system has been transformed from the original using a
sequence of orthogonal transforms, preventing spurious numerical errors from accumulating.

We now justify our claim that Lawson and Hansons’s stabilized expression for the Lagrange multipliers
given by (38) can be used instead of (37).

Theorem 6. Expressions (37) and (38) are equivalent.

Proof. First, note that since Qk is a (square) orthogonal matrix, we trivially have:

αk “ V Qk

´

QJ
k V

Jwk ´ QJ
k I

¯

. (39)

We expand the first term in the parenthesis into parts corresponding to Jk and Jc
k and simplify to get:

QJ
k V

Jwk “

´

QJ
k V

J
¯

:,Jk

pwkqJk
`

´

QJ
k V

J
¯

:,Jc
k

pwkqJc
k

loomoon

“0

“

´

QJ
k V

J
¯

:,Jk

pwkqJk
. (40)

We can further rewrite the matrix in this last expression as a block matrix to find that:

´

QJ
k V

J
¯

:,Jk

“

„

Rk pwkqJk

0pn´|Jk|qˆ|Jk|

ȷ

. (41)

Consequently:

QJ
k V

Jwk ´ QJ
k I “

«

Rk pwkqJk
´ bk

´

´

QJ
k I

¯

|Jk|:

ff

“

«

0|Jk|

´

´

QJ
k I

¯

|Jk|:

ff

. (42)

Now, consider pαkqJk
. We have:

pαkqJk
“ pV QkqJk,:

«

0|Jk|

´

´

QJ
k I

¯

|Jk|:

ff

“
“

RJ
k 0|Jk|ˆpn´|Jk|q

‰

«

0|Jk|

´

´

QJ
k I

¯

|Jk|:

ff

“ 0|Jk|. (43)

For pαkqJc
k
, we can write:

pαkqJc
k

“ pV QkqJc
k,:

«

0|Jk|

´

´

QJ
k I

¯

|Jk|:

ff

“ ´ pV QkqJc
k,|Jk|:

´

QJ
k I

¯

|Jk|:
. (44)

This proves the claim.

3.6 Basis pursuit quadrature

A classic model from the compressed sensing literature not too far removed from nonnegative least squares
is the basis pursuit problem [1]:

minimize }w}1

subject to V Jw “ I

w ě 0

(45)

In the original formulation of basis pursuit, the nonnegativity constraints are optional. We include them
in our formulation to present a form of basis pursuit pertinent to the design of positive quadratures. This
model was explored by Glaubitz [12].

13

10 20 30 40 50 60

d (Degree)

10´16

10´13

10´10

10´7

10´4

10´1

ˇ ˇ

ş

f
d
x

´
Q

rf
sˇ ˇ

fpxq “ p1 ` x2q´1

BP (n “ d2)

NNLS (n “ d2)

G-L

10 20 30 40 50 60

d (Degree)

10´16

10´13

10´10

10´7

10´4

10´1

ˇ ˇ

ş

f
d
x

´
Q

rf
sˇ ˇ

fpxq “
?
x ` 1

10 20 30 40 50 60

d (Degree)

10´16

10´13

10´10

10´7

10´4

10´1

ˇ ˇ

ş

f
d
x

´
Q

rf
sˇ ˇ

fpxq “ cosp20xq

´1.0 ´0.5 0.0 0.5 1.0
x

0.00

0.02

0.04

0.06

0.08

0.10

w

d “ 60 Quadratures

BP

NNLS

Figure 2: We compare the basis pursuit (BP) quadratures (Section 3.6) and nonnegative least squares
(NNLS) quadratures (Section 3.4) with Gauss-Legendre quadratures on the interval for several integrands
up to degree 60. To avoid ill-conditioning, we formulate the problem in the Chebyshev basis. We observe
that while the NNLS and BP quadratures are comparable in terms of their order of accuracy (being roughly
one half of what is achieved by the equivalent Gauss-Legendre rule, as expected), we find that the NNLS
rules are more symmetric, with a smooth decay of quadrature weights towards the boundary, as one might
expect.

14

Basis pursuit provides no advantage over nonnegative least squares. The cost function of (45) is piecewise
linear. Indeed, since all feasible w are nonnegative, the cost function can be replaced with 1Jw. However,
since Pd

N contains the constant functions, the value of 1Jw is fixed when the equality constraints V Jw ´ I
are satisfied since Qr1s “

ř

i wi “ 1Jw and since 1 can be formed as a linear combination of the columns of
V . Consequently, we can see that the cost function of (45) can be further simplified to Qr1s “ volpΩq, which
is a constant independent of w on the feasible set. Hence, solving (45) with standard linear programming
algorithms is equivalent to testing the constraints for feasibility. We can see that choosing a nontrivial cost
function then provides an opportunity to incorporate more information into our model (see Section 3.7,
where this idea is elaborated upon). In Section 3.6, we demonstrate that the quadratures computed on the
interval using basis bursuit and nonnegative least squares are comparable in terms of their accuracy; but we
also see that the Lawson-Hanson algorithm produces quadratures which are more symmetric with a smooth
roll-off of weights towards the boundary.

A simple example comparing the use of basis pursuit and NNLS for selecting positive quadratures from
a uniform grid discretizing r´1, 1s is provided in Section 3.6—we can see that the integration errors are
comparable, and the NNLS quadrature even seems to have a more regular node distribution, capturing the
symmetry of the domain automatically. Clearly, since basis pursuit reduces to feasibility testing and there
is no unique global minimum of the LP, the resulting quadrature is biased by the algorithm used to solve
the LP. We do not explore basis pursuit as an algorithm further, other than to note that it is essentially a
degenerate form of the LP quadrature proposed by Ryu and Boyd, discussed in Section 3.7.

3.7 Ryu-Boyd quadrature

The only difference between the basis pursuit quadratures (section 3.6) and the “Gauss LP” quadratures
due to Ryu and Boyd is the choice of cost function [22]. Let rpxq : Ω Ñ R, and let r “ rpXq. Ryu and
Boyd refer to this as a sensitivity function. The LP for Ryu-Boyd quadrature is:

minimize rJw,

subject to V Jw “ I,

w ě 0.

(46)

From this, we can see that basis pursuit is an instance of Ryu-Boyd with rpxq “ 1. We can conclude that
basis pursuit is totally insensitive to the choice of quadrature nodes, since we always consider polynomial
spaces that contain constant functions.

What sensitivity function r to use is open-ended—several choices are discussed in the original paper.
Clearly, we should choose a function r which doesn’t lie in the polynomial space being integrated so that
r isn’t contained in the column space of V (in which case, every feasible point is globally optimal, as we
saw with basis pursuit in the preceding paragraph). Ryu and Boyd prove that if the infinite-dimensional
version of (46) is solved in one dimension with rpxq “ x2m, then its solution recovers the corresponding
Gaussian quadrature. They are unable to prove an analogous result in higher dimensions, but they observe
experimentally that a choice like rpx, yq “ x2m`y2m for the polynomial space P2

m leads to good results. They
also observe that while choosing rpx, yq “ x2m ` y2m tends to produce “Gauss” quadratures (i.e., efficient
quadratures with strictly interior points), the choice rpx, yq “ ´x2m ´ y2m yields “Lobatto” quadratures,
where many points from the boundary are selected.

These observations can be contextualized somewhat by considering the convex geometry of the feasible
set. Namely, for a fine enough uniform grid sampling Ω, we observe that:

• ordinary least squares produces a fully interior point (Section 3.2),
• nonnegative least squares using the Lawson-Hanson algorithm produces an order m quadrature corre-
sponding to a point on the boundary of the feasible set, lying on a vertex or some facet of the polytope
(Section 3.4),

• basis pursuit does likewise, although the difference in algorithmic details biases the result to a different
order m quadrature (Section 3.6).

15

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 3: The original Ryu-Boyd algorithm (as described in Section 3.7) applied to the two test problems
shown in Figure 1 (the left and right columns in this figure correspond to the left and right columns in
Figure 1). The same spatial grid and moment-matching system are used. The residual function rpx, yq “

x20 ` y20 is used. Top: the LP (46) is solved using the simplex method. The resulting quadrature is shown,
exhibiting the effect originally observed by Ryu and Boyd, as small clusters form near ideal node placements.
These quadratures integrate P2

10 exactly and have exactly dimP2
10 “ 66 nodes. Bottom: The nodes are

clustered following Ryu and Boyd’s prescription and subsequently optimized using Gauss-Newton. After
running Gauss-Newton, all nodes remain in the interior of Ω and all weights remain positive. The left and
right column quadratures integrate P2

10 within numerical roundoff and have 36 and 32 nodes, respectively.
This is a significant increase in efficiency compared to the NNLS quadratures. Note that the minimum
number of nodes possible for these test problems is 22; so, the quadratures have an efficiency of 0.61 and
0.6875, respectively, while the NNLS quadratures each have an efficiency of 1{3.

16

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 4: Plots of node significances wj}φpxjq}2 for the NNLS quadratures computed in Figure 1.

Consequently, it can be seen that introducing the sensitivity function “steers” the optimum of the LP to
different quadratures which are at most order m.

A sketch of the Ryu-Boyd algorithm as presented in the original paper follows:

Algorithm 3.3: Sketch of algorithm for computing Ryu-Boyd quadratures

1) Following Section 3.1, let X be a uniform grid sampling Ω (let h ą 0 be the grid spacing).
2) Solve (46), letting w denote the optimum.
3) Let XLP “ tx P X : wx ą 0u.
4) Let wLP “ twx : x P XLPu.
5) Cluster XLP to obtain Xclust and wclust. This is heuristic. As an example, we could call two

points x,y P X “neighbors” if }x ´ y}8 ď h (giving 3d ´ 1 point neighborhoods). Finding all
connected components in the resulting graph gives a connected component for each cluster: to
find x P Xclust, compute their mean. To obtain wclust, sum together the weights of each node in
the connected component (this maintains

ř

xPXclust
wx “ volpΩq).

6) Use Gauss-Newton to optimize the moment-matching equations with pwclust,Xclustq as a warm
start—denote the result by pwopt,Xoptq.

7) The quadrature determined by pwopt,Xoptq is the result.

If h is too large, this algorithm can fail in two ways. First, clusters might begin to overlap or connect,
preventing us from determining the location of all quadrature nodes. Second, the Gauss-Newton iteration
may diverge if pwclust,Xclustq is an insufficiently good warm start. Both of these problems are mitigated by
letting h Ñ 0, giving us some confidence that this algorithm is consistent.

3.8 Xiao-Gimbutas elimination

Steinitz elimination (Section 3.3) allows us to reduce an order n ą m positive quadrature to an order
n “ m positive quadrature. If Q is the Steinitz-eliminated quadrature, then effpQq “ 1

d`1 . Since examples

abound of positive quadratures in d dimensions with eff ą 1
d`1 , it is natural to ask whether we can further

reduce the quadrature by eliminating nodes in some other way. Sadly, little is known in general about
optimal multivariate quadratures, so it is unclear what our notion of optimality should be, other than
driving effpQq ď 1 as high as possible. Nevertheless, Xiao and Gimbutas provide a method of eliminating
nodes using a nonlinear procedure [27]. We summarize their approach to node elimination here.

17

Unit disk Square with circular bite
d φmax σj |P2

d| |X | Eff G-N d φmax σj |P2
d| |X | Eff G-N

8 -0.003 Res 45 37 40.5% 5 8 -0.003 Res 45 43 34.9% 5
8 -0.003 XG1 45 44 34.1% 8 5 -0.003 XG1 45 42 35.7% 7
8 -0.003 XG2 45 37 40.5% 5 8 -0.003 XG2 45 43 34.9% 5
8 -0.01 Res 45 35 42.9% 5 8 -0.01 Res 45 35 42.9% 6
8 -0.01 XG1 45 44 34.1% 5 8 -0.01 XG1 45 42 35.7% 7
8 -0.01 XG2 45 34 44.1% 5 8 -0.01 XG2 45 34 44.1% 6
8 -0.03 Res 45 32 46.9% 6 8 -0.03 Res 45 29 51.7% 10
8 -0.03 XG1 45 44 34.1% 5 8 -0.03 XG1 45 42 35.7% 7
8 -0.03 XG2 45 30 50.0% 5 8 -0.03 XG2 45 29 51.7% 10
10 -0.003 Res 66 56 39.3% 5 10 -0.003 Res 66 58 37.9% 5
10 -0.003 XG1 66 63 34.9% 8 10 -0.003 XG1 66 61 36.1% 8
10 -0.003 XG2 66 56 39.3% 5 10 -0.003 XG2 66 60 36.7% 5
10 -0.01 Res 66 54 40.7% 5 10 -0.01 Res 66 56 39.3% 6
10 -0.01 XG1 66 63 34.9% 7 10 -0.01 XG1 66 64 34.4% 6
10 -0.01 XG2 66 52 42.3% 5 10 -0.01 XG2 66 54 40.7% 6
10 -0.03 Res 66 48 45.8% 7 10 -0.03 Res 66 47 46.8% 8
10 -0.03 XG1 66 63 34.9% 6 10 -0.03 XG1 66 62 35.5% 8
10 -0.03 XG2 66 48 45.8% 7 10 -0.03 XG2 66 45 48.9% 9
12 -0.003 Res 91 85 36.5% 4 12 -0.003 Res 91 79 39.2% 7
12 -0.003 XG1 91 90 34.4% 5 12 -0.003 XG1 91 90 34.4% 6
12 -0.003 XG2 91 78 39.7% 6 12 -0.003 XG2 91 84 36.9% 6
12 -0.01 Res 91 80 38.8% 7 12 -0.01 Res 91 76 40.8% 7
12 -0.01 XG1 91 90 34.4% 5 12 -0.01 XG1 91 88 35.2% 7
12 -0.01 XG2 91 78 39.7% 5 12 -0.01 XG2 91 76 40.8% 5
12 -0.03 Res 91 63 49.2% 7 12 -0.03 Res 91 65 47.7% 11
12 -0.03 XG1 91 89 34.8% 6 12 -0.03 XG1 91 88 35.2% 9
12 -0.03 XG2 91 62 50.0% 7 12 -0.03 XG2 91 59 52.5% 13

Table 1: For our two test domains, and for a variety of degrees, we run Xiao-Gimbutas elimination until
failure for each node significance. We find that the ℓ2-based significance and XG2 perform the best and are
routinely capable of boosting the efficiency of each quadrature by 10-15%.

18

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 5: NNLS quadratures from Figure 1 after using Xiao-Gimbutas elimination to remove one node at
a time until Gauss-Newton fails to converge. In each case, we can see that this process is able to remove a
significant number of nodes.

Xiao and Gimbutas define the significance of a quadrature node to be either:

σXG1
j “

m
ÿ

i“1

φipxjq2 or σXG2
j “ wj

m
ÿ

i“1

φipxjq2. (47)

Intuitively, we can see that σj will be large if it contributes a significant amount to the moments I1, . . . , Im,
and small otherwise. Xiao and Gimbutas eliminate quadrature nodes one at a time by first constructing a
new quadrature by leaving out the least significant quadrature node (the node with the smallest value of
σ) and then re-optimizing using Gauss-Newton. Their goal is to design quadratures for canonical domains
which are as close to optimal (effpQq “ 1) as possible, and they do achieve this end. For such domains,
their quadratures are likely the best that exist in many cases. Crucially, their approach involves recursively
backtracking over possible node elimination sequences, keeping the most efficient quadrature found. Their
recursion terminates if Gauss-Newton diverges or if it converges to a quadrature with negative weights or
nodes outside Ω. (Alternatively, one might consider using an algorithm for inequality-constrained nonlinear
optimization (e.g. sequential quadratic programming [3, 21]); likely, such an implementation would be more
efficient (possibly obviating the need for recursive backtracking), but would come at the cost of significant
implementation complexity.)

To motivate Xiao and Gimbutas’ notion of significance, let Q be a quadrature with weights w1, . . . , wn

and nodes x1, . . . ,xn which integrates P “ span tφ1, . . . , φmu, and let Q̃ denote the quadrature obtained
by removing the jth node from Q. Let V and w be the Vandermonde matrix and quadrature weight vector
associated with Q; likewise, define Ṽ and w̃ to go along with Q̃. As usual, let I be the moment vector. Since
Q integrates P, the moment-matching equations are satisfied: V Jw “ I. Define φpxq “ pφ1pxq, . . . , φmpxqq.
Note that with φpxq so defined, the Xiao-Gimbutas significances become σXG1

j “ }φpxjq}22 and σXG2
j “

wj}φpxjq}22, respectively. From

I “ V Jw “

n
ÿ

j“1

wjφpxjq “ wjφpxjq `

n
ÿ

k“1
k‰j

wkφpxkq “ wjφpxjq ` Ṽ
J
w̃, (48)

we have I ´ Ṽ
J
w̃ “ wjφpxjq. That is, we can see that wjφpxjq is exactly the residual of the moment-

matching equations for Q̃. Clearly, the closer either of the two Xiao-Gimbutas significances are to zero, the
closer the moment-matching equations for Q̃ are to being satisfied.

19

The full Xiao-Gimbutas algorithm (including recursive backtracking) is too costly to run on the fly. How-
ever, to take advantage of their method of eliminating nodes in the context of quickly generating quadrature
rules for many different unstructured cut cells, we can try speculatively eliminating nodes.

Algorithm 3.4: Simple greedy algorithm for node elimination

1) Compute σ “ pσ1, . . . , σN q for some definition of σj .
2) Remove the jth node, where j “ argminj σj .
3) Use Gauss-Newton to reoptimize the quadrature by solving the moment-matching equations.
4) Repeat this process while all weights are positive and all nodes lie within Ω.

Clearly, the sequence of eliminated nodes depends on the definition of σj .
We collect some numerical experiments showing the result of pruning different NNLS quadratures in

Table 1. We note that the Xiao-Gimbutas significances are not exactly the desired residual. To this end,
we include another node significance in our experiment, based more directly on the “punctured” moment-
matching residual:

σRes
j “ wk}φpxjq}2. (49)

We found that σRes
j performs similarly to XG2. However, In practice, we found that σXG1

j fares quite poorly,
typically failing to eliminate very many nodes at all.

Reoptimizing the quadrature rule using Gauss-Newton after eliminating a node is quite cheap compared
to solving the original NNLS problem. The underdetermined nonlinear least squares problem that needs to
be solved has m “ |P2

n| equations and pd`1q|X | “ Opmq unknowns. At the beginning of running the greedy
algorithm, the eliminated quadratures will tend to be very good warm starts for the Gauss-Newton iteration.
Quadratic convergence is typically attained, with Gauss-Newton converging to numerical roundoff in 5 or 6
iterations (for reference, the maximum number of Gauss-Newton iterations are reported in Table 1). The
initial NNLS quadrature will have m nodes, and the minimum possible is rm{pd` 1qs. Conservatively, if we
assume the cost of each elimination is Opm3q, then the overall cost of running the simple greedy algorithm
for elimination is Opm4q.

Adapting the NNLS discretization for Xiao-Gimbutas elimination. If the bounding box of Ω is
tight and we have very many grid points on Ω’s boundary, the Lawson-Hanson minimizer will tend to include
points along the boundary (the Lawson-Hanson quadratures tend to be Lobatto quadratures). Deleting a
node from one of these Lobatto quadratures and reoptimizing will spread the remaining points out slightly,
pushing some boundary points outside of Ω, thereby violating one of our desired constraints. To avoid this
problem, when sampling our grid, we can choose a value φmax slightly less than zero and only keep grid
points x which satisfy φpxq ď φmax to avoid an initial grid with boundary points. With this modification,
as our results in Table 1 show, Xiao-Gimbutas can often be run for many steps before any nodes exit the
domain, allowing us to significantly improve the efficiency of the Lawson-Hanson quadratures.

4 Fast Ryu-Boyd quadrature

We have not yet addressed how to approach solving the LP eq. (46) involved in computing a Ryu-Boyd
quadrature rule. Analogous to the Lawson-Hanson algorithm used to solve the nonnegative least squares
problem (31), we can use any off-the-shelf implementation of the simplex method. Alternatively, we could use
an interior point method. While the simplex method reveals information about individual quadrature points
as it proceeds, interior point methods compute iterates along a central path in the interior of the feasible set
which converge to the optimal solution (which is unique if the residual function is chosen appropriately—see
Section 3.6). Consequently, we might anticipate gaining information about all quadrature points simulta-
neously as we run an interior point method; and, indeed, this is the case. See, e.g., Figure 7. It is clear
that iterating an interior point LP solver has the effect of concentrating the initial iterate’s initially spread
out measure closer and closer around the final quadrature points until convergence is reached. In any case,

20

1 2 3 4 5 6 7 8 9

10´13

10´11

10´9

10´7

10´5

10´3

10´1

101

Complementarity

Primal rel. err.

Dual rel. err.

Rel. duality gap

MM residual

´1.0 ´0.5 0.0 0.5 1.0

´1.0

´0.5

0.0

0.5

1.0

Figure 6: Left : TODO. Right : the “clustered” quadrature (ˆ’s), and the optimized quadrature (˝’s). All
nodes in both the clustered quadrature and subsequent optimized quadrature are strictly interior to Ω, and
the weights are positive (lying in a range of about 0.014 to 0.239, the exact values being unimportant).

the clustering of several nonzero weights on the uniform grid surrounding the final quadrature points (as
shown in Figure 3) is observed by either algorithm since they converge to the same (generally unique) global
minimum of (46).

In this section we study one possible realization of an interior point method that is quite efficient. We
start from a standard primal-dual interior point method (“Algorithm MPC”) presented by Wright [26], which
is a particular instance of Mehrotra’s predictor-corrector method [20]. Some details are omitted, which can
be found in the original reference:

Algorithm 4.1: Using Algorithm MPC to solve (46)

1) Compute the LU decomposition of V JV .

2) Set w0 “ V pV JV q
´1

I.

3) Set λ0 “ pV JV q
´1

V Jr.
4) Set s0 “ r ´ V λ0.
5) Shift w0 and s0 by a constant vector so that w0 ą 0 and s0 ą 0.
6) For k “ 0, 1, . . . (until convergence):

a) Solve:
»

–

V Id

V J

diagpskq diagpwkq

fi

fl

»

–

∆waff
k

∆λaff
k

∆saffk

fi

fl “

»

–

r ´ sk ´ V λk

I ´ V Jwk

diagpskqdiagpwkq1

fi

fl (50)

b) Set αprimal
aff “ maxpα : 0 ď α ď 1,wk ` α∆waff

k ě 0q.
c) Set αdual

aff “ maxpα : 0 ď α ď 1, sk ` α∆saffk ě 0q.

d) Set µaff “ pwk ` αprimal
aff ∆waff

k qJpsk ` αprimal
aff ∆saffk q{n.

e) Set µk “ wJ
k sk{n.

f) Set σk “ pµaff{µkq3.

21

Figure 7: For the same test problem as in the left column of Figure 1 and Figure 3, we plot the first three
iterations’ primal and dual variables for the predictor-corrector interior point method applied to the Ryu-
Boyd quadrature LP. Left to right : the iterations of the interior point method. Top: the primal variables.
Bottom: the dual variables. For each iteration, the local maximum clustering is applied to produce a
warm start for Gauss-Newton used to solve the moment-matching equations (all Gauss-Newton iterations
immediately achieve quadratic converge and produce quadratures with a residual on the order of machine
precision). The red dots denote locations of local maxima.

22

Figure 8: The leftmost column (“Iteration #1”) is the warm start, which is essentially a least squares
quadrature (see ??). The quadrature computed this way is clearly incorrect for Iteration #0. However, it is
interesting to observe that the interior local minima of the dual variable at Iteration #0 correspond to the
correct quadrature.

g) Solve:

»

–

V Id

V J

diagpskq diagpwkq

fi

fl

»

—

–

∆w
pccq

k

∆λ
pccq

k

∆s
pccq

k

fi

ffi

fl

“

»

–

σkµk1 ´ diagp∆waff
k qdiagpsaffk q1

fi

fl (51)

h) Set ∆wk “ ∆waff
k ` ∆w

pccq

k .

i) Set ∆λk “ ∆λaff
k ` ∆λ

pccq

k .

j) Set ∆sk “ ∆saffk ` ∆s
pccq

k .
k) Set αprimal

max “ maxpα : α ě 0,wk ` α∆wk ě 0q.
l) Set αdual

max “ maxpα : α ě 0, sk ` α∆sk ě 0q.

m) Set αprimal
k “ minp0.99 ¨ αprimal

max , 1q.
n) Set αdual

k “ minp0.99 ¨ αdual
max , 1q.

o) Set wk`1 “ wk ` αprimal
k ∆wk.

p) Set λk`1 “ λk ` αdual
k ∆λk.

q) Set sk`1 “ sk ` αdual
k ∆sk.

The algorithm is complicated, but the rough idea is to take steps in the Newton direction for the LP’s KKT
system, while scaling and backtracking to ensure that the trajectory follows the central path. We can also
immediately observe that the initialization phase sets w0 to the least squares quadrature.

We plot several iterates of Algorithm 4.1 in Figure 7. From these plots, we can see straightaway that
that the clusters found in Figure 3 coincide with the local extrema of the Lagrange multiplier fields. We
can run Algorithm 4.1 until it converges, but this can easily take 10+ steps. As an alternative, we can try
finding the local extrema of one of the Lagrange multiplier fields and using those nodes as a warm start for
Gauss-Newton optimization. For example, an algorithm based on finding local maxima of some iterate wk

might look like:

Algorithm 4.2: Heuristic primal solver for computing Ryu-Boyd quadratures

23

Figure 9: From left to right, top to bottom: the warm start primal variables for the interior point method
(the least squares quadrature for the grid), followed by the first seven interior point primal iterations. The
domain is Ω “ r´1, 1s3´B3{2pp1, 1, 1qq. Despite appearances, after the first iteration, the local maxima of the
primal variable give an initial iterate for Gauss-Newton which immediately leads to quadratic convergence
when solving the moment matching equations. We neglect to plot the scale of the primal variables here (the
color is scaled to the range r0,maxpwkqs in each subplot, where wk is the primal variable field at the kth
iteration, with 0 ď k ă 8). The purpose of the plot is to drive home the point that each successive interior
point iteration serves to concentrate the measure nearer and nearer to the true quadrature points (which
are almost surely not grid points). The key observation is that we can already deduce the location of each
quadrature point from early iterations by looking at local maxima of the primal variable field.

1) Run Algorithm 4.1 to compute wk for k ą 0 small; say, k “ 1 or 2.
2) Find all strict local maxima of wk.
3) For the grid nodes corresponding to the local maxima, run Algorithm 3.2 to compute quadrature

weights (they will generally be positive).
4) Run Gauss-Newton to optimize the result.

Algorithm 3.2 is used to compute w0 within Algorithm 4.1 to initialize it. From Figure 8, it is clear that
the local maxima of w0 do not coincide with the locations of the final quadrature nodes. So, it is necessary
to run Algorithm 4.1 for at least one step. However, it is interesting to observe that the local minima of s0
already correspond quite well to the final quadrature nodes. Even more interesting is that the manner in
that s0 has a straightforward interpretation.

Let’s see how to interpret each of the dual variables in Algorithm 4.1. The dual variables λk can be
regarded as coefficients of a polynomial in P, and multiplication by V evaluates a polynomial with a given
coefficient vector at each grid point. We know already that r consists of the samples of a function on our
uniform grid on Ω. Since the columns of V are the basis functions sampled at the grid points, the matrix
V JV approximates the L2 Gram matrix, suitably normalized:

hd
´

V JV
¯

ij
“
ÿ

k

hdφipxkqφjpxkq Ñ pφi, φjqL2pΩq as h Ñ 0. (52)

24

Iter. κpDF q }R0}8 }Rfinal}8 |X| Eff. #GN
1 9.4e+02 5.3e-02 1.3e-15 52 40.4% 5
2 9.0e+02 5.9e-02 8.9e-16 50 42.0% 5
3 9.2e+02 5.8e-02 2.7e-15 47 44.7% 5
4 8.7e+02 3.1e-02 4.4e-16 46 45.7% 5
5 9.4e+02 2.8e-02 1.1e-15 44 47.7% 5
6 8.3e+02 2.0e-02 8.9e-16 56 37.5% 5
7 8.8e+02 1.8e-02 3.6e-15 55 38.2% 5
8 9.0e+02 1.8e-02 8.9e-16 55 38.2% 5

Table 2: For the same setup as Figure 9, some statistics for the primal-dual iterations. These statistics
particularly concern the selected warm start (the “clustered” quadrature) and the subsequent Gauss-Newton
iteration for solving the moment-matching equations. The statistics show the “quality” of the warm start is
only marginally improved with additional primal-dual iterations. The efficiency of the quadrature improves
somewhat after several iterations (see bold), but begins to degrade beyond that point. From left to right :
the primal-dual iteration (“Iter.”), the condition number of the Jacobian of moment-matching residuals
evaluated at the warm start (“κpDF q”), the max norm of the moment-matching residual for the warm start
(“}R0}8”), the max norm of the final moment-matching residual (“}Rfinal}8”), the number of quadrature
points (“|X|”), the efficiency of the quadrature (“Eff.”), and the number of Gauss-Newton iterations needed
for convergence (“#GN”).

, and multiplying a vector by hdV J computes an approximation of the dot products with each of the basis

functions, e.g. hdpV Jrqi Ñ pφi, rqL2pΩq as h Ñ 0. Hence, setting λ0 “ pV JV q
´1

V Jr is an orthogonal

projection of the function r onto the space Pd
N with respect to the uniform discrete measure supported on

our grid sampling Ω. Then, s0 “ r´V λ0 consists of the samples of vector rejection of r from Pd
N . Since this

uniform discrete measure approximates the (continuous) uniform measure on Ω as h Ñ 0, this is a consistent
approximation of the L2 projection.

Algorithm 4.3: Heuristic dual solver for computing Ryu-Boyd quadratures

1) Compute s “ r ´ V pV JV q´1V Jr.
2) Find all strict local minima of s.
3) Optimize the result using Gauss-Newton, as in Algorithm 4.2.

In the continuous setting, if tφ1, . . . , φmu is a basis for polynomial space P and r P L2pΩq is the underlying
function from which r is sampled, then we can compute s in much the same way as in the first step
of Algorithm 4.3 as follows. First compute bi “ pφi, rqL2pΩq for each i. Then, form the Gram matrix

Gij “ pφi, φjqL2pΩq and set c “ G´1b. Finally, set s “ r ´
ř

i ciφi (as h Ñ 0, s computed in Algorithm 4.3
converges to s). Using the continuous formulation, we can gather some evidence that Algorithm 4.3 is a
credible algorithm.

Example 4.1. Let Ω “ r´1, 1s and let rpxq “ x2n. Let φipxq “ xi for i such that 0 ď i ă 2n. We find
that spxq “ P2npxq, the 2nth Legendre polynomial. To find the local minima of P2npxq, we consider every
other zero of P 1

2n. Call these zeros xj (j “ 1, . . . , n). It turns out that the xj ’s are asymptotic to the zeros
of Pn, which are the abscissae of the order n Gauss-Legendre quadrature rule. In numerical experiments,
we found that for all n that we tried (from n “ 1 up to n “ 200 or so), using least squares to compute
weights corresponding to the xj ’s always resulted in positive weights, and that the subsequent Gauss-Newton
iteration immediately achieved quadratic convergence.

Clearly, the choice of residual function plays a large role here; it is unclear whether a residual function
exists which guarantees success for Algorithms 4.2 and 4.3.

25

Figure 10: Relative integration error using each quadrature rule to integrate fpx, yq “ cospxq sinpyq over Ω.
Here, Ω is the cut cell with a disk-shaped bite removed, as shown in e.g. Figure 8. Left : plotted vs. dofpQq.
Right : plotted vs. the degree of the polynomial space being integrated.

5 Numerical results

Each of these algorithms follows the same steps, at least conceptually.
1) Discretize the bounding box of Ω into a uniform grid and discard all points lying outside the domain.
2) Compute the moments of each basis function in the polynomial space being integrated.
3) Solve some version of the moment-matching equations using an algorithm described in the preceding

sections.
To avoid overcomplicating things, we assume that Ω is described by a level set function and that we know
its exact bounding box. In this case, Step 1 is extremely simple. But this need not be the case—if Ω is
described by a CAD B-rep conforming to BΩ, then computing the bounding box and subsequently filtering
points outside Ω is more complicated. We do not dwell on the details here.

See Figures 10 to 12 for numerical results in 2D. In particular, we consider the domain:

Ω “ r´1, 1s2z
␣

px, yq P R2 : px´ 1q2 ` py ´ 1q2 ă 1
(

. (53)

In terms of the level set functions:

ψboxpx, yq “ maxpmaxp|x|, |y|q ´ 1 (54)

ψdiskpx, yq “ px´ 1q2 ` py ´ 1q2 ´ 1 (55)

ψdiffpx, yq “ maxpψboxpx, yq,´ψdiskpx, yqq, (56)

this can is equivalently given by:

Ω “
␣

px, yq P R2 : ψdiffpx, yq ď 0
(

. (57)

We use the monomial basis for a basis for Pm,d:

φαpx, yq “ xα1yα1 s.t. |α| ď m. (58)

26

Figure 11: Relative integration error using each quadrature rule to integrate fpx, yq “ p1 ` x2 ` y2q´1 over
Ω. Left : plotted vs. dofpQq. Right : plotted vs. the degree of the polynomial space being integrated.

Figure 12: Timings result for building different quadrature rules on the cut cell shown in Figure 8. Left :
numbers of quadrature points computed per second on a single core. Right : number of quadrature rules (i.e.
cut cells processed) per second per core.

27

For small N (up to, say, N “ 15 to 20), the monomial basis is accurate for our use, despite its inherent
ill-conditioning. The target use case for the fast cut cell quadrature algorithms presented in this paper is
numerical quadrature for the finite element method or similar, in which case N is unlikely to be excessively
large. For higher degrees, the Chebyshev or Legendre bases could be used. Volume integration of multivariate
monomials can be expedited by the divergence theorem. Specifically, it is not hard to show that:

ż

Ω

fpxqdx “
1

d` q

ż

BΩ

npxq ¨ xfpxqdx. (59)

One proof directly applies the divergence theorem; it can also be shown using Euler’s theorem on homo-
geneous functions. If BΩ is polyhedral, we can continue to reduce this integral by repeatedly applying the
divergence theorem within faces, then edges [6]. However, we argue that even in the polyhedral case, it
is unlikely to be advantageous to further reduce the dimension of the boundary integral—the expressions
become much more complicated and the gain in computational complexity is unclear.

6 Acknowledgments

Preliminary work for this research was carried out while employed at Coreform, LLC. Many thanks to
the employees and management of Coreform for providing a fruitful and collaborative environment and
for motivating this work in the first place. Special thanks are due to Drs. Derek Thomas, Michael Scott,
Greg Vernon, David Kamensky, and Christopher Whetten for useful conversations and for providing helpful
orientation within the world of computational mechanics.

References

[1] Atomic Decomposition by Basis Pursuit | SIAMReview. https://epubs.siam.org/doi/abs/10.1137/S003614450037906X.

[2] Alexander Barvinok. A Course in Convexity. Number 54 in Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 2002.

[3] Paul T. Boggs and Jon W. Tolle. Sequential Quadratic Programming. Acta Numerica, 4:1–51, January
1995.

[4] Hoang-Giang Bui, Dominik Schillinger, and Günther Meschke. Efficient cut-cell quadrature based on
moment fitting for materially nonlinear analysis. Computer Methods in Applied Mechanics and Engi-
neering, 366:113050, July 2020.

[5] Erik Burman, Susanne Claus, Peter Hansbo, Mats G. Larson, and André Massing. CutFEM: Dis-
cretizing geometry and partial differential equations. International Journal for Numerical Methods in
Engineering, 104(7):472–501, 2015.

[6] Eric B. Chin, Jean B. Lasserre, and N. Sukumar. Numerical integration of homogeneous functions on
convex and nonconvex polygons and polyhedra. Computational Mechanics, 56(6):967–981, December
2015.

[7] Mathieu Collowald and Evelyne Hubert. Algorithms for computing cubatures based on moment theory.
Studies in Applied Mathematics, 141(4):501–546, 2018.

[8] Philip J Davis. A Construction of Nonnegative Approximate Quadratures.

[9] Giacomo Elefante, Alvise Sommariva, and Marco Vianello. CQMC: An improved code for low-
dimensional Compressed Quasi-MonteCarlo cubature.

28

[10] Wadhah Garhuom and Alexander Düster. Non-negative moment fitting quadrature for cut finite ele-
ments and cells undergoing large deformations. Computational Mechanics, 70(5):1059–1081, November
2022.

[11] Jan Glaubitz. Constructing Positive Interpolatory Cubature Formulas, September 2020.

[12] Jan Glaubitz. Stable high-order cubature formulas for experimental data. Journal of Computational
Physics, 447:110693, December 2021.

[13] Jan Glaubitz. Construction and application of provable positive and exact cubature formulas. IMA
Journal of Numerical Analysis, 43(3):1616–1652, June 2023.

[14] Ming Gu and Stanley C Eisenstat. Efficient Algorithms for Computing a Strong Rank-Revealing QR
Factorization. SIAM Journal on Numerical Analysis, 17(4), 1996.

[15] Daan Huybrechs. Stable high-order quadrature rules with equidistant points. Journal of Computational
and Applied Mathematics, 231(2):933–947, September 2009.

[16] John D. Jakeman and Akil Narayan. Generation and application of multivariate polynomial quadrature
rules. Computer Methods in Applied Mechanics and Engineering, 338:134–161, August 2018.

[17] Vahid Keshavarzzadeh, Robert M. Kirby, and Akil Narayan. Numerical Integration in Multiple Dimen-
sions with Designed Quadrature. SIAM Journal on Scientific Computing, 40(4):A2033–A2061, January
2018.

[18] Charles L. Lawson and Richard J. Hanson. Solving Least Squares Problem. Number CL15 in Classics
in Applied Mathematics. SIAM, 1995.

[19] Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. On interpolation and integration in finite-
dimensional spaces of bounded functions. Communications in Applied Mathematics and Computational
Science, 1(1):133–142, May 2007.

[20] Sanjay Mehrotra. On the Implementation of a Primal-Dual Interior Point Method. SIAM Journal on
Optimization, 2(4):575–601, November 1992.

[21] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer, New York, NY, second edition edition, 2006.

[22] Ernest K. Ryu and Stephen P. Boyd. Extensions of Gauss Quadrature Via Linear Programming.
Foundations of Computational Mathematics, 15(4):953–971, August 2015.

[23] R. I. Saye. High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrect-
angles. SIAM Journal on Scientific Computing, 37(2):A993–A1019, January 2015.

[24] Vaidyanathan Thiagarajan and Vadim Shapiro. Adaptively weighted numerical integration over arbi-
trary domains. Computers & Mathematics with Applications, 67(9):1682–1702, May 2014.

[25] B. Vioreanu and V. Rokhlin. Spectra of Multiplication Operators as a Numerical Tool. SIAM Journal
on Scientific Computing, 36(1):A267–A288, January 2014.

[26] Stephen J. Wright. Primal-Dual Interior-Point Methods. Society for Industrial and Applied Mathemat-
ics, Philadelphia, 1997.

[27] Hong Xiao and Zydrunas Gimbutas. A numerical algorithm for the construction of efficient quadra-
ture rules in two and higher dimensions. Computers & Mathematics with Applications, 59(2):663–676,
January 2010.

29

	Introduction
	Related work

	Preliminaries
	Notation and basic definitions
	Background on quadrature
	Moment-matched quadratures
	Existence of positive quadratures

	Quadrature toolbox
	Discretizing the cut cell
	Least squares quadrature
	Steinitz elimination
	Nonnegative least squares quadrature
	Accuracy of the Lawson-Hanson algorithm
	Basis pursuit quadrature
	Ryu-Boyd quadrature
	Xiao-Gimbutas elimination

	Fast Ryu-Boyd quadrature
	Numerical results
	Acknowledgments

