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ABSTRACT

The nonuniform fast Fourier transform comprises a set of algorithms
which approximately interpolate the usual discrete Fourier transform
in the time and/or frequency domain. A nonuniform fast Fourier
transform based on the fast multipole method was previously de-
veloped but passed over in favor of other approaches [1, 2]. This
work extends a recent method for computing a periodized fast multi-
pole method [3] with an adaptive algorithm that reduces the required
number of multipole-to-local and local-to-local translations by an
order of magnitude. This combination improves the speed and ac-
curacy of the original algorithm, and results in an algorithm that is
competitive with other nonuniform fast Fourier transforms. Numer-
ical experiments are carried out comparing our implementation with
others, demonstrating its viability.

Index Terms— nonuniform FFT, adaptive FMMs, constant Q
transforms, periodization, nonuniform sampling

1. INTRODUCTION

The nonuniform Fourier transform (NUFFT) finds use in a plethora
of applications—within signal processing, a primary motivation for
our work is the family of constant Q transforms [4], which are fre-
quently used in real-time audio analysis, where they are often com-
puted for a train of short blocks with lengths on the order of 64–1024
samples, similar to the short-time Fourier transform (STFT). Several
accelerated constant Q transforms exist [5, 6]. The constant Q trans-
form is a particular nonuniform DFT, and the work presented here
can be applied to it with little modification.

The NUFFT approximately interpolates the discrete Fourier
transform (DFT) in O(n logn) time, where n is the problem size.
The original papers on the NUFFT present two separate algorithms,
one based on an analysis of the Gaussian [1], and another using the
fast multipole method, or FMM [2, 7]. Since then, accelerated meth-
ods based on min-max interpolation [8], fast Gaussian gridding [9],
and other gridding methods [10] have been developed and are in
widespread use.

In this work, we extend the original FMM-based method for the
NUFFT [2, 7] by employing a periodized FMM [3] and developing
an adaptive algorithm which accelerates its computation. With these
improvements, our single-threaded NUFFT is competitive with ex-
isting NUFFT implementations and runs exceptionally fast on the
small problems required by the constant Q transform. It also has
steps which can be precomputed, amortizing their cost.

The structure of the paper is as follows: we first summarize re-
sults from the original NUFFT research, then outline relevant de-
tails regarding the FMM. Following this, we discuss periodizing the
FMM and show that the original procedure can be simplified and

accelerated when computing the NUFFT. Our adaptive FMM al-
gorithm is presented in Section 5, alongside empirical results that
indicate its suitability for the NUFFT. Finally, we discuss our nu-
merical experiments comparing our implementation with others and
assessing its applicability to the constant Q transform.

2. THE NONUNIFORM FAST FOURIER TRANSFORM

Let f : R → C be a bandlimited function, and let K ∈ N be its
bandlimit. Then, for J ∈ N and j such that 0 ≤ j < J , if we define
x̃j such that 0 ≤ x̃j < 2π, xk = 2πk/K, and fk = f(xk), we can
use the DFT to interpolate f exactly at x̃j :

f̃j = f(x̃j) =
1

K

K−1∑
k=0

 dK/2e−1∑
l=−bK/2c

eil(x̃j−xk)

 fk. (1)

It is well-known [2, 11] that this expression is equivalent to:

f̃j =
sin(Kx̃j/2)

K

∞∑
p=−∞

K−1∑
k=0

(−1)kfk
x̃j − xk − 2πp

, (2)

which describes a linear operator that performs the interpolation step
of the NUFFT. Since the outer summation in p periodizes the sum
of weighted kernels, this operator can be approximated using a peri-
odized FMM, which is the focus of this work.

Although the operator described here interpolates a bandlimited
function, the same operator can be used with the FFT to compute
the forward constant Q transform. The original NUFFT research de-
scribes the full complement of algorithms more completely [2]. Al-
though our focus is only on two of the original FMM-based NUFFT
transforms, the work here can be applied to the other two, and will
be pursued in a later work.

3. THE CAUCHY KERNEL FAST MULTIPOLE METHOD

There are multiple FMMs for the so-called Cauchy kernel [7, 12],
given by Φ(y, x) = (y − x)−1. The implementation of an FMM re-
quires the derivation of regular (R-) and singular (S-) factorizations
of the kernel function, as well as translation operators for these fac-
torizations [13]. We use a straightforward implementation based on
single variable Taylor series expansions of Φ [12].

For the S-factorization, we fix x, y, and x∗ with |x− x∗| <
|y − x∗| and define bm(x, x∗) = (x− x∗)

m and Sm(y − x∗) =
(y − x∗)

−m−1. The point x∗ is referred to as the expansion center.
Then, the S-factorization of Φ is given by:

Φ(y, x) =

∞∑
m=0

bm(x, x∗)Sm(y − x∗). (3)



For the R-factorization, we fix x, y, and x∗ with |y − x∗| <
|x− x∗| and define am(x, x∗) = −(x− x∗)

−m−1 and Rm by
Rm(y − x∗)

m = (y − x∗)
m. Then, the R-factorization is:

Φ(y, x) =

∞∑
m=0

am(x, x∗)Rm(y − x∗). (4)

The FMM uses linear translation operators to repeatedly reex-
pand a grid of S-expansions, converting them to R-expansions for
evaluation. The three translation operators are denoted by S|S, S|R,
and R|R—these operators are used to switch between factoriza-
tions, e.g. S|R reexpands an S factorization as an R factorization.
The S|S operator is given by:

(S|S)n,m =

{
(−1)n−mn!δn−m

(n−m)!m!
if n ≥ m,

0 otherwise,
(5)

where δ is the translation vector between the two expansion centers.
That is, if the resultant S-factorization is to be expanded about x′

∗,
then δ = x′

∗ − x∗. The S|R and R|R operators are given by:

(S|R)n,m =
(−1)n (m+ n)!

m!n!δm+n+1
, (6)

(R|R)n,m =

{
m!δm−n

(m−n)!n!
if n ≤ m,

0 otherwise.
(7)

More details concerning this FMM, including error and complexity
analysis, are available [12].

Two parameters are required by the FMM. First, an integer P >
0 is selected: this is the truncation number, and is the point at which
each S− and R− factorization and translation operator are truncated
(e.g., see (13)). Second, the FMM makes use of a tree data structure
(such as a binary tree, quadtree, or octree): the depth of this tree is
L ≥ 2.

4. PERIODIC SUMMATION

We are interested in computing the factor of (2) which matches this
description. In order to do so, we employ a periodized black box
summation method [3] which is particularly well-suited to the FMM.
We define:

φ(y) =

∞∑
p=−∞

K−1∑
k=0

(−1)kfk
y − xk − 2πp

. (8)

To apply the method, we select an interval of interest, a larger neigh-
borhood which contains it, and decompose φ into a term due to
the neighborhood and one due to its complement. Our region of
interest is the interval [0, 2π). We fix n ∈ N and define P =
{−n,−n+ 1, . . . , n}. Letting:

φnear(y) =
∑
p∈P

K−1∑
k=0

(−1)kfk
y − xk − 2πp

, (9)

φfar(y) =
∑
p/∈P

K−1∑
k=0

(−1)kfk
y − xk − 2πp

, (10)

we can write φ(y) = φnear(y)+φfar(y). With x∗ = π, if y satisfies
0 ≤ y < 2π, then, using (4):

1

y − xk − 2πp
=

∞∑
m=0

am(xk + 2πp, π)Rm(y − π). (11)

From (11), we define for each m ∈ {0, 1, . . .}:

cm =
∑
p/∈P

K−1∑
k=0

(−1)kfkam(xk + 2πp, π), (12)

which allows us to write φfar(y) =
∑∞

m=0 cmRm(y − π). This
expansion of φfar in terms of the Rm basis is the crucial step that
enables the method.

The original periodic summation algorithm uses the FMM to
compute φnear and solves a linear least squares problem to compute
φfar. This approach allows the cm coefficients to be computed in
a manner which avoids dealing with them directly. However, c0 is
not recovered by this method and must be handled separately. The
original algorithm was designed for problems where c0 can be ig-
nored, but this is not case for the NUFFT. Because of this, and since
values of cm for m > 0 are small and can be bounded away or
estimated, we deal with the coefficients directly and avoid the least
squares problem. The next two sections bound these coefficients and
discuss their approximation.

4.1. Necessary Conditions

The periodic summation method does not converge if a few basic
necessary conditions are not met. We approximate φfar by:

φfar(y) = ε
(P )
far +

P−1∑
m=0

cmRm(y − π). (13)

For the method to converge, we require ε
(P )
far and each cm to con-

verge. The following lemmas establish this.

Lemma 1. The coefficient c0 is finite.

Proof. A bit of algebra yields:

c0 =
1

2π2

K−1∑
k=0

(−1)kfk(xk − π)
∞∑

p=n+1

1

p2 −
(
xk−π
2π

)2 .
Then, for each k = 0, . . . ,K, we have:∫ ∞

n+1

dt

t2 −
(
xk−π
2π

)2 =
2π

xk
tanh-1

(
xk − π

2π(n+ 1)

)
when (xk − π)2/4π2 ≤ (n+ 1)2. This holds, since n ∈ N and
0 ≤ xk < 2π for k = 0, . . . ,K − 1.

Lemma 2. The coefficients cm for m > 0 are finite.

Proof. From (12), we have:

cm = −
K−1∑
k=0

(−1)kfk

∞∑
p=n+1

1

(xk + 2πp− π)m+1 . (14)

Then, since
∫∞
n+1

(xk + 2πt− π)−m−1dt < ∞ for each m > 0
and n > 0, we have that cm converges for each m > 0.

Lemma 3. The error term for the approximation to φfar(y) given by
ε
(P )
far is finite and satisfies:

|ε(P )
far | ≤ −π−1 ||f||1 Ei (−P log(2n+ 1)) ,

where Ei is the exponential integral [14].



Proof. For each y such that 0 ≤ y < 2π, we have that:

|ε(P )
far | ≤

K−1∑
k=0

|fk|
∞∑

m=P

∑
p/∈P

|y − π|m

|xk + 2πp− π|m+1

≤ π−1
K−1∑
k=0

|fk|
∞∑

m=P

∑
p/∈P

1

|2p− 1|m+1 ,

since |y− π| ≤ π, and |xk − 2πp− π| ≥ π|2p− 1|. We can bound
each side of the inner summation over p as:

∞∑
m=P

1

(2p± 1)m+1 ≤
∫ ∞

P

dm

(2p± 1)m+1 =
(2p± 1)−P−1

log(2p± 1)
.

Since each of these terms are positive and decreasing, we have:

∞∑
p=n+1

(2p± 1)−P−1

log(2p± 1)
≤

∫ ∞

p=n+1

(2p± 1)−P−1

log(2p± 1)
dp

=
1

2

∫
P log(2(n+1)∓1)

dy

yey
,

where the equality follows from the change of variables x = 2p± 1
and y = p log x. The final integral is the negative of the exponential
integral function Ei evaluated at −P log(2(n+1)∓ 1). Combining
our results so far, we have:

∞∑
p=n+1

(2p± 1)−P−1

log(2p± 1)
≤ −1

2
Ei (−P log(2(n+ 1)∓ 1)) .

Using the monotonicity of Ei gives us our result.

Lemmas 1–3 ensure that the periodic summation method works.
Additionally, the error bound developed in Lemma 3 provides a use-
ful criterion for choosing the n and P parameters.

4.2. Computation of Fitting Coefficients

We can use the bounds in Lemmas 1 and 2 to estimate cm for m ≥ 0.
From Lemma 1, we note that c0 is approximately given by:

c0 ≈ 1

4π

K−1∑
k=0

(−1)kfk log

(
α+ xk

γ − xk
· β + xk

α− xk

)
, (15)

where α = (2n+ 1)π, β = (2n− 1)π, and γ = (2n+ 3)π. From
Lemma 2, we have:

cm ≈ −1

2m

K−1∑
k=0

(−1)kfk

(
1

xk + α
+

1

xk + β

)
. (16)

Altogether, these approximations can be evaluated in O(PK) time,
and used to improve the accuracy of our method by approximately
imposing periodic boundary conditions.

5. AN ADAPTIVE FAST MULTIPOLE METHOD

Adaptive algorithms for the FMM have been proposed; we describe
our own contribution here. Definitions of FMM-specific jargon can
be looked up in standard sources [13, 15]. When computing φnear

in Procedure 3, source points correspond to an equispaced grid of
K points between −2πn and 2π(n + 1). Target points only occur

Table 1. The number of S|R translations required by Procedure 2.

L 4 6 8 10 12

Max. # S|R 93 381 1533 6141 24573

n # S|R

1 34 136 526 2068 8218
2 27 90 327 1254 4947
3 27 72 246 915 3552
4 18 60 192 708 2766
5 18 48 162 582 2268
6 18 48 141 507 1923
7 18 48 132 450 1686
8 18 39 117 390 1482

within the interval [0, 2π). Our adaptive FMM builds a set of “trans-
lation stencils”: data structures that indicate whether or not a given
translation needs to be computed.

Procedure 1 Recursively mark FMM translation stencils.
1: Initialize S|S,S|R, and R|R translation stencils.
2: for all nodes in the current node’s E4 neighborhood1 do
3: if the arc from the node in the E4 neighborhood to the current

node hasn’t been marked in the S|R translation stencil then
4: Mark the corresponding entry in the translation stencil.
5: Mark all S|S translations beneath the node in the E4 neigh-

borhood.
6: end if
7: if the current node is not at the highest level of the translation

hierarchy then
8: Mark the current node in the R|R translation stencil.
9: Recursively run Procedure 1 at the current node’s parent.

10: end if
11: end for

Applying S|R operators is the slowest part of the FMM. The
reasons are twofold: three times as many S|R operators as R|R or
S|S operators are applied, and the S|R operator for this kernel is
a dense matrix (the others are triangular—see Equations 5 and 7).
Asymptotically, O(2L) operators are applied, although L is usually
small—e.g., L = 4. Our adaptive FMM dramatically reduces the
number of S|R and R|R translations needed (see Table 1 for the
number of S|R operators—we note that the number of S|R transla-
tions remains approximately three times the number of R|R). There
are large improvements: with n = 1, only one third the number
of S|R and R|R operators are required. The maximum reduction
achieved is even more significant—for L = 12 and n = 8, only
6.03% the number of S|R operators are required. Our adaptive al-
gorithm is straightforward:

Procedure 2 Adaptive FMM.
1: Run Procedure 1.
2: Run the usual FMM algorithm, but only compute translations

which have been marked by Procedure 1.

Using Procedure 2 and our estimates for each cm, we can com-
pute the NUFFT. There is some question of choosing L optimally—
this is covered elsewhere [12, 13], and corresponds to solving a sim-
ple optimization problem derived from an analysis of the algorithm.

1The E4 neighborhood [12, 13] is also called an interaction list [15].
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Fig. 1. Characteristic runtimes for varying bandwidths (K), plotted
for each NUFFT implementation (n = 1, P = 2).

For our numerical experiments, we experimentally determined the
optimal choice of L. Our NUFFT algorithm follows:

Procedure 3 Bandlimited interpolation (our main algorithm).
1: Choose L ≥ 2 optimally for use with the FMM.
2: for j = 0, . . . , J do
3: Compute φnear(x̃j) using Procedure 2.
4: end for
5: Compute c0 from (15).
6: for m = 0, . . . , P − 1 do
7: Compute cm from (16).
8: end for
9: for j = 0, . . . , J do

10: Compute φfar(x̃j) from (13).
11: Compute φ(x̃j) = φnear(x̃j) + φfar(x̃j).
12: end for

We defer a full analysis of Procedure 3’s complexity, but note that the
complexity of the original FMM-based NUFFT is not compromised,
as the salient difference is the computation of the fitting coefficients.

6. NUMERICAL RESULTS

Our experiments were run on a single 2.2 GHz Intel Core i7 core.
We compared our implementation with NFFT3 [16], NUFFT [9, 18],
and IRT [8]. Our implementation is single-threaded at present—we
compiled the other libraries with parallelism disabled for a fair com-
parison. Each library is relatively well-optimized. We conducted
the following numerical experiments: for varying K and for differ-
ent test functions [19, 20, 21], we measured the `∞ error of each
method (see Figure 2—the NUFFT library was omitted since it at-
tained machine precision). Next, we timed each method for the same
range of K. As a base line, we timed the numpy library’s IFFT [17]
(see Figure 1). We found that for an optimistic choice of parameters
(n = 1, P = 2—the minimum possible), our algorithm was rea-
sonably accurate and competitive in terms of speed. We found that
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Fig. 2. The `∞ error for different bandwidths (K) and for each
NUFFT implementation (n = 1, P = 2). Note: for some problem
sizes, NFFT3 attained machine precision.

NFFT3 possesses similar performance and accuracy characteristics,
but that these characteristics are more erratic. The NUFFT library is
very accurate, but slow for small problem sizes.

As a final test, for different choices of block size, we computed
a constant Q transform with 24 filters per octave in order to esti-
mate the CPU load due to Procedure 3. We found that for a range
of block sizes and sampling rates which are used commonly, Proce-
dure 3 generally incurred low single-digit CPU load (see Table 2),
which is eminently reasonable for soft realtime audio processing.

7. CONCLUSIONS AND FUTURE WORK

In this work, we extend an existing NUFFT algorithm [2]. In the
conclusions of the original work, the method is passed over in favor
of other algorithms developed by the same authors [1]. Our con-
tribution has been to extend the method to enhance the algorithm’s
precision for neglible added cost, and to greatly reduce the required
number of operations by providing an adaptive FMM which suits
the problem data. Our implementation, although only modestly op-
timized, is competitive with libraries that have existed for years.

Several future lines of research will be pursued. First, the origi-
nal FMM-based NUFFT [7] is based on a Chebyshev approximation
of Φ, with the translation operators compressed and accelerated us-
ing singular value decompositions—this approach will be explored.
We will also investigate applying parallel and GPU implementations
of the FMM [22].

Table 2. Estimated CPU load for computing a 24 filter per octave
constant Q transform using a modified Procedure 3.

Block Size 44.1KHz 48KHz 88.2KHz 96KHz

32 5.79% 4.35% 9.1% 10.2%
64 3.31% 3.3% 6.06% 7.05%

128 2.24% 2.85% 7.92% 5.25%
256 2.31% 4.12% 3.34% 3.6%
512 1.31% 1.65% 3.05% 2.87%

1024 1.46% 1.05% 1.94% 2.46%
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