
Fast construction
of efficient cut cell quadratures

Samuel F. Potter

Robert McNeel & Associates
Seattle, WA

Who am I?

• Me: https://sampotter.github.io
• Currently employed by Robert McNeel & Associates

(makers of Rhinoceros 3D (www.rhino3d.com)
• Working on modernizing their CAD kernel: faster,

more accurate, more robust...
• Previously: research scientist at Coreform, LLC

(this talk)
• Previously: CI at NYU w/ Leslie Greengard
• Previously: CS PhD from UMD w/ Masha Cameron

https://sampotter.github.io

Coreform

What’s this talk about?

Useful algorithms for on-the-fly construction of
“Gaussian”-ish cut cell quadratures...

Ωint

Ωcut

What’s this talk about?

Useful algorithms for on-the-fly construction of
“Gaussian”-ish cut cell quadratures...

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

The beast

• Choose basis {ϕα} (α a multi-index) for
multivariate space of polynomials P

• For order n quadrature, find weights and nodes
satisfying:

n
∑

i=1

wiϕα(xi) =
∫

Ω

ϕα, ∀α

• Nonlinear, underdetermined: can solve with
Gauss-Newton with good initial guess

• Linear if node positions are fixed (but how to
choose nodes?)

The efficiency of a quadrature rule

Definition
Number of degrees of freedom of Qn is:

dof(Qn) = (d+ 1)n (for wi and xi)

and the efficiency of Qn by:

eff(Qn) =
dimPm,d

dof(Qn)

where 0 ≤ eff(Qn) ≤ 1.

• Gauss-Legendre: eff = 1
• Clenshaw-Curtis: eff = 1/2
• Tensor Gauss-Legendre: eff ∼ 2d/(d+ 1)! ∼ 0 as
n→∞

Existence and stability of positive quadratures

Theorem (Tchakaloff)
For Ω ⊆ Rd compact, exists positive quadrature with
order not greater than m = dimP with nodes in Ω.

Theorem (Huybrechs 2009)
Let κ(Qn) =
∑

i |wi|, let f a function be integrated, and f̃
an approximation of f with |f − f̃ | ≤ ε pointwise. Then:
�

�

�

�

�

∑

i

wif (xi)−
∑

i

wif̃ (xi)

�

�

�

�

�

≤ εκ(Qn).

Strictly larger if Qn isn’t positive.

Discretizing the cut cell
1. Map cut cell bounding box onto [−1,1]d

2. Discretize the box into a uniform, isotropic grid with
grid spacing h > 0

3. Discard all points that lie strictly outside Ω

Discretizing the cut cell

• Nodes: x1, . . . ,xn
• Basis matrix for moment-matching equations:

V =





ϕ1(x1) · · · ϕm(x1)
...

. . .
...

ϕ1(xn) · · · ϕm(xn)



 (1)

• Moment vector:

I ∈ Rm st Iα =

∫

Ω

ϕα(x)dx (2)

• Linear moment-matching (underdetermined):

V⊤w = I (3)

Quadrature toolbox: overview

Goal: using our oversampled grid, find sparse,
nonnegative solution, subset of positive weights. Lots
of approaches:
• Least squares
• Steinitz elimination
• Nonnegative least squares
• Basis pursuit (won’t cover, equivalent to NNLS)
• Xiao-Gimbutas elimination
• Ryu-Boyd (linear prog.)

Quadrature toolbox: least squares rules

Least squares quadrature:
• Solve:

minimize
1

2
∥V⊤w− I∥22

using LU decomposition or QR.

Theorem (Existence: Huybrechs 1D, me nD)
There exists a positive integer n0 such that for n ≥ n0
the resulting least squares quadrature is positive.

Problem: w > 0 at all nodes.

Quadrature toolbox: least squares rules

(For 32,121 points...)

Quadrature toolbox: Steinitz elimination

Can we remove unnecessary quadrature nodes?
Yes, look in the nullspace of V⊤ to find shift ∆w so that:

V⊤(w+∆w) = I, w+∆w ≥ 0. (4)

Theorem (Steinitz)
Let Qn be a positive quadrature that integrates P on Ω
such that n ≥m = dimP. Then there exists a positive
quadrature of order m w/ subset of nodes of Qn.

Proof.
Proof gives an algorithm now called Steinitz
elimination.

Consequence: positive least squares rule exists =⇒
order m rule exists, proof is constructive.

Quadrature toolbox: NNLS rules

Nonnegative least squares quadrature:
• Solve:

minimize
1

2
∥V⊤w− I∥22

subject to w ≥ 0

Undeterdetermined convex optimization problem, can
have infinite number of solutions.

Can always find m-sparse solution, but solution
may not have zero residual

Quadrature toolbox: NNLS rules

Theorem (Carathéodory)
If x ∈ cone(A) ⊆ Rm, then x can be written as the conical
combination of m points in A.

u

v

w

x = αu+ βv + γw

Note: V⊤w = I is a conic combination!

Quadrature toolbox: NNLS rules

Problem: solution biased by algorithm when
nonunique, need to use right algorithm.

Algorithm NNLS:
1. Use the Lawson-Hanson algorithm (i.e. primal

active set method for quadratic program with
linear inequality constraints) to solve NNLS.

2. Return the subset of weights and nodes for
which wi > 0.

Typically relaxes one quadrature node at a time,
converging to an extreme point on the feasible
set.

Quadrature toolbox: NNLS rules

What does this look like?

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Quadrature toolbox: Xiao-Gimbutas elimination

A concern: In general, we expect the solution of either
NNLS or BP to be M-sparse. This is only achieves:

eff(Q) =
1

d+ 1
. (5)

Nonlinear node elimination: Xiao and Gimbutas
propose the following method for removing nodes from
a quadrature which differs from Steinitz’ approach.

Algorithm XG:
1. Compute σj =wj

∑

α ϕα(xj)
2 for each j.

2. Delete node j from the quadrature.
3. Run Gauss-Newton on the result.

Quadrature toolbox: Xiao-Gimbutas elimination

What does this look like?

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Quadrature toolbox: Xiao-Gimbutas elimination

What does this look like?

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Quadrature toolbox: Ryu-Boyd
Ryu and Boyd consider the semi-infinite linear program:

minimizeμ

∫

Ω

rdμ

subject to
∫

Ω

ϕαdμ =

∫

Ω

ϕα(x)dx ∀α

μ ≥ 0

where optimization is over all nonnegative measures
supported on Ω.

Crucial: function r is the “residual”: free for the user to
choose.

Ryu and Boyd prove that on [−1,1], with r(x) = x2n

and ϕi(x) = xi (0 ≤ i < 2n), Gaussian-Legendre quadra-
ture is the unique sol’n of this problem.

Quadrature toolbox: Ryu-Boyd

Lay down uniform grid and discretize to get the LP:

minimize r⊤w

subject to V⊤w = I (RB)

w ≥ 0.

where r is the “residual”, a parameter.

We use r(x,y) = x2n + y2n throughout, but choice of
residual needs more work.

Quadrature toolbox: Ryu-Boyd

What happens if we throw RB at a black box LP solver?

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Again, only produces eff(Q) = 1/(d+ 1)
quadrature... but look at the nodes...

Quadrature toolbox: Ryu-Boyd

Algorithm RB:
• Solve RB using black-box LP solver.
• Identify clusters of points.
• Replace each cluster with a single quadrature

point:
▶ Let the new weight wclust be the sum of the

weights.
▶ Let the new node be the convex combination of

the old nodes using the normalized quadrature
weights for each point, i.e.
xclust =
∑

j∈clust(wj/wclust)xj.
• Optimize the “clustered” quadrature using

Gauss-Newton.

Quadrature toolbox: Ryu-Boyd

What does this look like?

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Quadrature toolbox: Ryu-Boyd

What does this look like?

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Quadrature toolbox: primal-dual RB

What if we look under the hood of our LP solver? Two
standard approaches: simplex and interior point.

An interior point method for solving Ryu-Boyd is a
curious choice, because by construction it produces
iterates which have wi for every i at each step!

But the result converges pointwise to an M-sparse
solution...?

Quadrature toolbox: primal-dual RB

It works! And after only a single step. Just need to find
local optima and re-optimize using Gauss-Newton after
selection:

Quadrature toolbox: primal-dual RB

It works! And after only a single step. Just need to find
local optima and re-optimize using Gauss-Newton after
selection:

Quadrature toolbox: primal-dual RB

Quadrature toolbox: primal-dual RB

Quadrature toolbox: primal-dual RB

Quadrature toolbox: primal-dual RB

Quadrature toolbox: primal-dual RB

Quadrature toolbox: primal-dual RB

Quadrature toolbox: primal-dual RB

Quadrature toolbox: primal-dual RB

Quadrature toolbox: primal-dual RB

What about the dual variables? (Left: primal variable,
right: dual variable)

Quadrature toolbox: dual asymptotic RB

What are the dual variables? Explicitly, to initialize
the primal-dual iteration, we compute:

w(0)← V(V⊤V)−1I (initialize w/ Alg. LS)

λ(0)← (V⊤V)−1V⊤r (compute Lagrange mult.)

s(0)← r − Vλ(0) (compute slack var.)

Observations:
• The Lagrange multiplier λ(0) gives the coefficients

in the ϕα basis of the projection of r onto Pm,d with
respect to the uniform discrete measure supported
on our sampling grid.

• Hence, the slack variable s(0) is the grid function
which is the vector rejection of r—i.e., the part of r
not in Pm,d with respect to the discrete measure.

Quadrature toolbox: dual asymptotic RB

Does this make sense? Yes. On the interval [−1,1]
and with respect to the L2 inner product, if we “vector
reject” the monomial x2n from 1,x, . . . ,x2n−1, we get
the Legendre polynomial P2n. Furthermore, the
locations of the local minima of P2n are asymptotic to
the zeros of Pn (i.e., the order n Gauss-Legendre
abscissae) (see e.g. Szëgo).

Some evidence: on the interval [−1,1], Gauss-Newton
appears to always converge starting from the local
minima of P2n.

Fast primal/dual algorithms

Fast primal Ryu-Boyd:
• Run primal-dual interior point method for one or

two steps.
• Find local maxima of w.
• Pull out those nodes; solve for weights using LS

or NNLS.
• Optimize result w/ Gauss-Newton.

Fast dual Ryu-Boyd:
• Compute s = r − V(V⊤V)−1V⊤r.
• Find local minima of s.
• Same deal as before.

Both of these methods are heuristic!

Numerical results

Vary degree, integrate different functions on one of our
test domains, compare DOFs, accuracy, time to build
rule

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Numerical results

Numerical results

Numerical results

Numerical results

Numerical results

Numerical results

Use in Coreform Flex

10x runtime speedup, 14x memory reduction

Use in Coreform Flex

Use in Coreform Flex

Conclusion

Thoughts:
• Key takeway is that there are many options to

compute excellent quadrature rules on
unstructured domains, allowing us to avoid
mapping, meshing, decomposition, whatever.

• Lots of interesting things to try and to prove going
forward to put this on firmer footing.

• The most expensive part of this process is setting
up the moment vector I. Doing this quickly and
accurately for a 3D simulation is “simple” but has a
nontrivial implementation.

Paper:
• “Fast construction of efficient cut cell quadratures”,

Samuel F. Potter, link to preprint available on my
website https://sampotter.github.io.

https://sampotter.github.io

