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Who am I?

• Me: https://sampotter.github.io
• Currently employed by Robert McNeel & Associates

(makers of Rhinoceros 3D (www.rhino3d.com)
• Working on modernizing their CAD kernel: faster,

more accurate, more robust...
• Previously: research scientist at Coreform, LLC

(this talk)
• Previously: CI at NYU w/ Leslie Greengard
• Previously: CS PhD from UMD w/ Masha Cameron

https://sampotter.github.io


Coreform



What’s this talk about?

Useful algorithms for on-the-fly construction of
“Gaussian”-ish cut cell quadratures...

Ωint

Ωcut
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The beast

• Choose basis {ϕα} (α a multi-index) for
multivariate space of polynomials P

• For order n quadrature, find weights and nodes
satisfying:

n
∑

i=1

wiϕα(xi) =
∫

Ω

ϕα, ∀α

• Nonlinear, underdetermined: can solve with
Gauss-Newton with good initial guess

• Linear if node positions are fixed (but how to
choose nodes?)



The efficiency of a quadrature rule

Definition
Number of degrees of freedom of Qn is:

dof(Qn) = (d+ 1)n (for wi and xi)

and the efficiency of Qn by:

eff(Qn) =
dimPm,d

dof(Qn)

where 0 ≤ eff(Qn) ≤ 1.

• Gauss-Legendre: eff = 1
• Clenshaw-Curtis: eff = 1/2
• Tensor Gauss-Legendre: eff ∼ 2d/(d+ 1)! ∼ 0 as
n→∞



Existence and stability of positive quadratures

Theorem (Tchakaloff)
For Ω ⊆ Rd compact, exists positive quadrature with
order not greater than m = dimP with nodes in Ω.

Theorem (Huybrechs 2009)
Let κ(Qn) =
∑

i |wi|, let f a function be integrated, and f̃
an approximation of f with |f − f̃ | ≤ ε pointwise. Then:
�

�

�

�

�

∑

i

wif (xi)−
∑

i

wif̃ (xi)

�

�

�

�

�

≤ εκ(Qn).

Strictly larger if Qn isn’t positive.



Discretizing the cut cell
1. Map cut cell bounding box onto [−1,1]d

2. Discretize the box into a uniform, isotropic grid with
grid spacing h > 0

3. Discard all points that lie strictly outside Ω



Discretizing the cut cell

• Nodes: x1, . . . ,xn
• Basis matrix for moment-matching equations:

V =





ϕ1(x1) · · · ϕm(x1)
...

. . .
...

ϕ1(xn) · · · ϕm(xn)



 (1)

• Moment vector:

I ∈ Rm st Iα =

∫

Ω

ϕα(x)dx (2)

• Linear moment-matching (underdetermined):

V⊤w = I (3)



Quadrature toolbox: overview

Goal: using our oversampled grid, find sparse,
nonnegative solution, subset of positive weights. Lots
of approaches:
• Least squares
• Steinitz elimination
• Nonnegative least squares
• Basis pursuit (won’t cover, equivalent to NNLS)
• Xiao-Gimbutas elimination
• Ryu-Boyd (linear prog.)



Quadrature toolbox: least squares rules

Least squares quadrature:
• Solve:

minimize
1

2
∥V⊤w− I∥22

using LU decomposition or QR.

Theorem (Existence: Huybrechs 1D, me nD)
There exists a positive integer n0 such that for n ≥ n0
the resulting least squares quadrature is positive.

Problem: w > 0 at all nodes.



Quadrature toolbox: least squares rules

(For 32,121 points...)



Quadrature toolbox: Steinitz elimination

Can we remove unnecessary quadrature nodes?
Yes, look in the nullspace of V⊤ to find shift ∆w so that:

V⊤(w+∆w) = I, w+∆w ≥ 0. (4)

Theorem (Steinitz)
Let Qn be a positive quadrature that integrates P on Ω
such that n ≥m = dimP. Then there exists a positive
quadrature of order m w/ subset of nodes of Qn.

Proof.
Proof gives an algorithm now called Steinitz
elimination.

Consequence: positive least squares rule exists =⇒
order m rule exists, proof is constructive.



Quadrature toolbox: NNLS rules

Nonnegative least squares quadrature:
• Solve:

minimize
1

2
∥V⊤w− I∥22

subject to w ≥ 0

Undeterdetermined convex optimization problem, can
have infinite number of solutions.

Can always find m-sparse solution, but solution
may not have zero residual



Quadrature toolbox: NNLS rules

Theorem (Carathéodory)
If x ∈ cone(A) ⊆ Rm, then x can be written as the conical
combination of m points in A.

u

v

w

x = αu+ βv + γw

Note: V⊤w = I is a conic combination!



Quadrature toolbox: NNLS rules

Problem: solution biased by algorithm when
nonunique, need to use right algorithm.

Algorithm NNLS:
1. Use the Lawson-Hanson algorithm (i.e. primal

active set method for quadratic program with
linear inequality constraints) to solve NNLS.

2. Return the subset of weights and nodes for
which wi > 0.

Typically relaxes one quadrature node at a time,
converging to an extreme point on the feasible
set.



Quadrature toolbox: NNLS rules

What does this look like?
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Quadrature toolbox: Xiao-Gimbutas elimination

A concern: In general, we expect the solution of either
NNLS or BP to be M-sparse. This is only achieves:

eff(Q) =
1

d+ 1
. (5)

Nonlinear node elimination: Xiao and Gimbutas
propose the following method for removing nodes from
a quadrature which differs from Steinitz’ approach.

Algorithm XG:
1. Compute σj =wj

∑

α ϕα(xj)
2 for each j.

2. Delete node j from the quadrature.
3. Run Gauss-Newton on the result.



Quadrature toolbox: Xiao-Gimbutas elimination

What does this look like?
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Quadrature toolbox: Xiao-Gimbutas elimination

What does this look like?

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200



Quadrature toolbox: Ryu-Boyd
Ryu and Boyd consider the semi-infinite linear program:

minimizeμ

∫

Ω

rdμ

subject to
∫

Ω

ϕαdμ =

∫

Ω

ϕα(x)dx ∀α

μ ≥ 0

where optimization is over all nonnegative measures
supported on Ω.

Crucial: function r is the “residual”: free for the user to
choose.

Ryu and Boyd prove that on [−1,1], with r(x) = x2n

and ϕi(x) = xi (0 ≤ i < 2n), Gaussian-Legendre quadra-
ture is the unique sol’n of this problem.



Quadrature toolbox: Ryu-Boyd

Lay down uniform grid and discretize to get the LP:

minimize r⊤w

subject to V⊤w = I (RB)

w ≥ 0.

where r is the “residual”, a parameter.

We use r(x,y) = x2n + y2n throughout, but choice of
residual needs more work.



Quadrature toolbox: Ryu-Boyd

What happens if we throw RB at a black box LP solver?

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Again, only produces eff(Q) = 1/(d+ 1)
quadrature... but look at the nodes...



Quadrature toolbox: Ryu-Boyd

Algorithm RB:
• Solve RB using black-box LP solver.
• Identify clusters of points.
• Replace each cluster with a single quadrature

point:
▶ Let the new weight wclust be the sum of the

weights.
▶ Let the new node be the convex combination of

the old nodes using the normalized quadrature
weights for each point, i.e.
xclust =
∑

j∈clust(wj/wclust)xj.
• Optimize the “clustered” quadrature using

Gauss-Newton.



Quadrature toolbox: Ryu-Boyd

What does this look like?
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Quadrature toolbox: Ryu-Boyd

What does this look like?
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Quadrature toolbox: primal-dual RB

What if we look under the hood of our LP solver? Two
standard approaches: simplex and interior point.

An interior point method for solving Ryu-Boyd is a
curious choice, because by construction it produces
iterates which have wi for every i at each step!

But the result converges pointwise to an M-sparse
solution...?



Quadrature toolbox: primal-dual RB

It works! And after only a single step. Just need to find
local optima and re-optimize using Gauss-Newton after
selection:
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Quadrature toolbox: primal-dual RB
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Quadrature toolbox: primal-dual RB



Quadrature toolbox: primal-dual RB



Quadrature toolbox: primal-dual RB



Quadrature toolbox: primal-dual RB



Quadrature toolbox: primal-dual RB



Quadrature toolbox: primal-dual RB

What about the dual variables? (Left: primal variable,
right: dual variable)



Quadrature toolbox: dual asymptotic RB

What are the dual variables? Explicitly, to initialize
the primal-dual iteration, we compute:

w(0)← V(V⊤V)−1I (initialize w/ Alg. LS)

λ(0)← (V⊤V)−1V⊤r (compute Lagrange mult.)

s(0)← r − Vλ(0) (compute slack var.)

Observations:
• The Lagrange multiplier λ(0) gives the coefficients

in the ϕα basis of the projection of r onto Pm,d with
respect to the uniform discrete measure supported
on our sampling grid.

• Hence, the slack variable s(0) is the grid function
which is the vector rejection of r—i.e., the part of r
not in Pm,d with respect to the discrete measure.



Quadrature toolbox: dual asymptotic RB

Does this make sense? Yes. On the interval [−1,1]
and with respect to the L2 inner product, if we “vector
reject” the monomial x2n from 1,x, . . . ,x2n−1, we get
the Legendre polynomial P2n. Furthermore, the
locations of the local minima of P2n are asymptotic to
the zeros of Pn (i.e., the order n Gauss-Legendre
abscissae) (see e.g. Szëgo).

Some evidence: on the interval [−1,1], Gauss-Newton
appears to always converge starting from the local
minima of P2n.



Fast primal/dual algorithms

Fast primal Ryu-Boyd:
• Run primal-dual interior point method for one or

two steps.
• Find local maxima of w.
• Pull out those nodes; solve for weights using LS

or NNLS.
• Optimize result w/ Gauss-Newton.

Fast dual Ryu-Boyd:
• Compute s = r − V(V⊤V)−1V⊤r.
• Find local minima of s.
• Same deal as before.

Both of these methods are heuristic!



Numerical results

Vary degree, integrate different functions on one of our
test domains, compare DOFs, accuracy, time to build
rule
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Numerical results
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Use in Coreform Flex

10x runtime speedup, 14x memory reduction



Use in Coreform Flex



Use in Coreform Flex



Conclusion

Thoughts:
• Key takeway is that there are many options to

compute excellent quadrature rules on
unstructured domains, allowing us to avoid
mapping, meshing, decomposition, whatever.

• Lots of interesting things to try and to prove going
forward to put this on firmer footing.

• The most expensive part of this process is setting
up the moment vector I. Doing this quickly and
accurately for a 3D simulation is “simple” but has a
nontrivial implementation.

Paper:
• “Fast construction of efficient cut cell quadratures”,

Samuel F. Potter, link to preprint available on my
website https://sampotter.github.io.

https://sampotter.github.io

